
CO

CMS
<

I o
<

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE NOTES
CLEA

^i 71593 ^AC^ACCU^OBO^O^

DIRECTORATE FOR FREEDOM Of INFORMATION
AND SECURJ1Y REVIEW (0A3D-PA)

""""'"""'HlfeT EDITION

DTIC
ELECTE
DEC2 81993

A

July 1993

by

Duane J. Jarc and Eric Fendler

in cooperation with

Undergraduate Programs
University of Maryland University College

Sponsored by Advanced Research Projects Agency (ARPA)

APPKCvr" F'
u 1-^

98 12 27 06 V i 93_3127l 02 7
" * c ,^x iiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii * ,

\v

REPORT DOCUMENTATION PAGE
form Appowtf

OMt Mo. OW-Olit

- ; —-.—. fcüSü lot ihn coMMtion •(m<o«i«»i'0« <» ntimMM to «vxift I kOM pn '»wonM. «clwflAl U« l«"» «er i«viniiin| mtliiKtMni. M«KftM«f tMMif 4tu touxn.
cemin««« «»««('*m "tiS» UM imtuiMrtii #T*iiiiS «MMCI of' IK»
.0«t«er*w ft» wterm«!««p>t<«Mii*«ni«tvom. lilt ttNtnon

1. AGCNa USI ONLY (iMvt Wjnfc) 2. REPORT OATI
July 1993

I. REPORT TYPE ANO DATES COVERED

LECTURE NOTES
4. TITU ANO SUiTITU

CMSC 130 INTRODUCTORY COMPUTER SCIENCE
LECTURE NOTES

1 mfwmi
Duane J. Jarc & Eric Pendler

7. MRFORMINC ORGANIZATION NAME(S) AND AOORESSUS)

UNIVERSITY OP MARYLAND UNIVERSITY COLLEGE

$. EÜNOiNO NUMURS

MDA972-92-J-1021

1. PERFORMING ORGANIZATION
REPORT NUMSER

CMSC 130

•. SPONSORING/MONITORING AGENCY NAME(S) AND AOORESSUS)

ARPA
3701 N. Pairfax Dr.
Arlington, VA 22203-1714

10. SPONSORING/MONITORING
AGENCY REPORT NUMRER

11. SUPPLEMENTARY NOTES

12«. DISTRIRUTION/AVAIURIIITV STATEMENT

APPROVED FOR PüTLlCRELEASt

DISTRIBUTION U LIMiTED

12b. blSTRIlÜtlÖN CODE

13. AiSTRACT (MsMimum 200 words)

The CMSC 130 Introductory Computer Science lecture notes are
used in the classroom for teaching CMSC 130, an introductory
computer science course, using the Ada programming language.

14. SURIECT TERMS

COMPUTER SCIENCE
ADA LANGUAGE
ppnrp AMMTwr.

LANGUAGE CONCEPTS
SOFTWARE CONCEPTS

IS. NUMRER OP PAGES

1«. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

LL
It. SECURITY CLASSIFICATION

OF THIS PAGE
1«. SECURITY CLASSIFICATION

OF ABSTRACT

u
20. LIMITATION OF ABSTRACT

o l u
NSN 7540-01 280-5500 Standard Form 298 (Rev 2-B9)

'•*v.«t*4 by «NW SM in<l
nt-ioi

First Edition—July 1993

Copyright 1993 by University of Maryland University College (UMUC). Advanced
Research Projects Agency (ARPA), in conjunction with the Ada Joint Program Office
(AJPO), will have the right to make unlimited copies and use the finished materials
in its programs and all other U.S. Government training programs. The Air Force
Institute of Technology (AFTT) may adapt the materials for its training programs.
The Software Engineering Institute (SEI) may distribute the materials to its
educational affiliates. UMUC will retain the right to use the materials within the
University of Maryland System and to make it available to other colleges and
universities. All other rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the copyright holder.

This project is sponsored by ARPA. The content of the information does not
necessarily reflect the position or the policy of the Government, and no official
endorsement should be inferred.

Printed in the United States of America.

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 1

INTRODUCTION AND
OVERVIEW

ncQu^i- ii,:^c^D5

Accesion l-O'

NTIS CHAii
DTü: TAP

JuitiT:'„)*;..■■

V

By .^^C-

OVERVIEW OF INTRODUCTORY COURSES

CMSC 130 Introductory Computer Science

Basic Syntax And Semantics Of Ada Language

Conditional And Iterative Control Structures

Scalar Data Types, Arrays And Records

Structured Programming Concepts

CMSC 135 Intermediate Computer Science

Additional Ada Language Concepts

Generic Packages

Access Data Types

Öata Structures And Algorithm Efficiency

J Stacks, Queues, Lists, Trees And Graphs

Objected-Oriented Programming Concepts

Recursive Programming Concepts

CMSC 230 Advanced Computer Science

Advanced Ada Language Concepts

Task Declarations And Control Statements

Concurrent Programming Concepts

CMSC130 -2- Lecture 1

CMSC 130 OVERVIEW

Introductory Concepts

Hardware/Software Concepts

Language Concepts

Software Engineering Concepts

Control Structures

Conditional Control (If And Case Statements)

Iterative Control (For, While And Loop Statements)

Subprograms (Procedures And Functions)

Data Structures

Scalar Data Types

Array Types

Record Types

Abstraction Concept

Procedural Abstraction

Data Abstraction

CMSC130 -3- Lecture 1

COMPUTER HARDWARE

Central Processing Unit (CPU)

Arithmetic Logic Unit (ALU)

Storage

Registers

Main Memory

Disk

Input/Output Devices

CMSC130 4- Lecture 1

COMPUTER SOFTWARE

System Software

Operating System

Interface Between Compi iter Hardware And User

Manages System Resources

System Software (Program Development)

Editor

Allows Text File Creation And Modification

Compiler

Translates High Level Language Into Machine Language

Linker

Links Separately Compiled Files Together

Symbolic Debugger

Allows Program Tracing And Memory Examination

Integrated Development Environment

Integrated Editor, Compiler, Linker And Debugger

Application Software

User Written Programs

CMSC130 -5- Lecture 1

PROGRAM DEVELOPMENT PROCESS

Develop
Algorithm

i
Write Program

i
Compile Program

i
Fix Errors

i
Run Program

CMSC130 6- Lecture 1

COMPUTER SCIENCE AS AN
INTERDISCIPLINARY FIELD

Computer
Science

Mathematical Component

Algorithms, Efficiency And Computability

Linguistic Component

Programming Languages

Engineering Component

Design Principles (Software Engineering)

CMSC 130 Lecture 1

ALGORITHMS AND PROBLEM SOLVING

Terminology:

Algorithm: A Step By Step Procedure That Is Used To Solve A
Problem

Sandwich Making Algorithm

1. Go To The Store And Buy Some Bread

2. Go Home And Put The Bread On A Plate

3. Go To The Store And Buy Some Mustard

4. Go Home And Put The Mustard On The Bread

5. Go To The Store And Buy Some Baloney

6. Go Home And Put The Baloney On The Bread

7. Eat The Sandwich

Important Points:

1. A Clear Problem Definition Must Precede Algorithm
Development

2. Algorithm Development Determines The Details Of How
To Solve The Problem

3. There Are Many Algorithms That Solve The Same
Problem

CMSC130 -8- Lecture 1

EFFICIENT ALGORITHMS

Terminology:

Algorithm Efficiency: A Measure Jf The Number Of Steps
Required To Complete An Algorithm

Efficient Sandwich Making Algorithm

1. Go To The Store And Buy Bread, Mustard And Baloney

2. Go Home And Put The Bread On The Plate

3. Put Mustard On The Bread

4. Put Baloney On The Bread

5. Eat The Sandv.ich

Important Points:

1. This Algorithm Is More Efficient Than The Previous
Algorithm, It Save Two Steps, Two Trips To The Store

2. For More Complex Algorithms, The Number Of Steps
Required May Not Be Constant, It May Depend On Some
Input, The Type Of Sandwich, For Example

3. When The Number Of Steps Varies, Plotting A Graph Of
The Steps Versus The Input Data Can Be Useful

CMSC130 -9- Lecture 1

SOFTWARE ENGINEERING PRINCIPLES

Computer Science As An Engineering Discipline

1. Software Systems Require Design, An Essential
Characteristic Of Engineering Fields

2. Computer Systems Are Constructed, The Building
Material Is The Programming Language

3. Simplicity Is An Important Design Criterion, Simple
Programs Are More Reliable And Easier To Maintain

Programming Languages And Software Engineering

1. Ada Is A Language Designed With Software Engineering
Principles In Mind

2. Ada's Design Emphasizes Reliability Before Efficiency

3. Using A Well Designed Language Can Reduce The Cost
Of Software Development

Ada Software Engineering Features

1. Structured Language With Fully Nested Syntax

2. Procedural Abstraction Supported By Subprograms

3. Data Abstraction Supported By Packages

CMSC130 -10- Lecture 1

PROGRAMMING LANGUAGES

Characteristics Of Programming Languages

1. Programming Languages Are Formal Languages That
Avoid The Potential Ambiguity Of Natural Language

2. Programming Languages Have A Precise Syntax,
Programs With Syntax Errors Are Not Understood

Languages And Compilers

1. Compilers Are Language Translators That Translate
From A High-Level Language To Machine Language

2. Compilers Translate Complete Programs, Interpreters
Translate One Line At A Time

Abstraction Level Of Languages

1. Programming With Low-Level Languages Is Like Building
With Small Bricks, More Work Is Involved

2. Programming With High-Level Languages Is Like
Building With Prefabricated Panels, Less Work Is
Involved

CMSC130 -ii - Lecture 1

EVOLUTION OF PROGRAMMING
LANGUAGES

Unstructured Imperative Languages

Machine Language

Physical (Numeric) Addresses, Numeric Operation
Codes

Assembly Language

Symbolic Addresses And Operation Codes

Structured Imperative Languages

Languages With Arithmetic Formulas (Fortran)

Nested Expressions

Fully Structured Languages (Pascal, C, Ada)

Nested Statements, No Gotos Required

Nonimperative Languages

Functional Programming Languages (ML)

No States, No Variables, No Assignments

Logic Programming Languages (Prolog)

No Explicit Control Flow, Nonprocedural

CMSC130 -12- Lecture 1

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 2

SIMPLE ADA PROGRAMS

ADA HISTORY

Developed By DoD In Response To High Cost Of Software

Ada Development Was A Ten Year Effort

1973-1974 Cost Study To Find Ways To Reduce Software Costs

1975 High Order Language Working Group (HOLWG)

Goal To Adopt Standard DoD Language

Developed Requirement Specifications

(Strawman, Woodenman, Tinman)

1977 Concluded No Existing Language Met Specifications

Solicited Proposals For New Language

17 Proposals Received, All Based On Pascal Excepts IBM's

4 Selected, Designated Red, Blue, Green and Yellow

1978 Two Finalists selected

Red (Intermetrics), Green (CM Honeywell Bull)

1979 Green Language Chosen

1981-1982 Extensive Public Reviews

1983 Military Standard & ANSI Standard Adopted

First Compilers Available In Mid 1980^

CMSC130 -2- Lecture 2

LEVELS OF LANGUAGE

1 Natural Language Programming Language 1

1 Letters Characters |

1 Words Tokens 1

1 Phrases Expressions 1

Sentences Statements 1

Paragraphs Subprograms 1

Sections Programs 1

LEXICAL COMPONENTS

Natural Language

Parts Of Speech

Noun, Verb, Adjective, Adverb, Preposition

Programming Language

Token Categories

Reserved Words, Identifiers, Constants, Operators

CMSC130 -3- Lecture 2

IDENTIFIERS AND RESERVED WORDS

Identifier Syntax

Identifiers Must Begin With A Letter, Followed By Zero Or
More Letters, Digits Or Underscores, Consecutive
Underscores And Terminating Underscores Are Prohibited

Valid Identifiers

Name This_Value Value_2

Invalid Identifiers

5_Value Begins With Digit

Some Number Consecutive Underscores

statement# Contains Special Character

identif ier_ Terminating Underscore

Role Of Identifiers

Identifiers Are Used To Name Variables, Constants Etc.

Unlike English Words Which Are Fixed, Programmers Can
Create Any Identifier That Follows The Syntax Rules And
Give It A Meaning

Reserved Words

Certain Ada Identifiers, If Case While And Others, Are
Reserved, Have A Predefined Meaning, They Can Not Be
User-Defined Identifiers

CMSC130 -4- Lecture 2

LEXICAL STYLE

Comments

Comments Add Clarification To Programs, They Begin With
Two Dashes And End With End Of Line

-- This Is An Ada Comment

Upper And Lower Case Issues

Ada Is Case Insensitive, Upper And Lower Case Characters
Are Not Distinct

There Is No Widely Observed Convention For The Use Of
Upper And Lower Case

Upper And Lower Case Convention Adopted

Upper Case For Reserved Words

Mixed Case For User Defined Identifiers

Blank Space

Any Number Of Spaces Can Separate Tokens

Blank Space Should Be Used Liberally To Enhance The
Readability Of Programs

Indentation

Indentation With Blank Space Should Be Used To Reflect The
Control Structure Of The Program

CMSC130 -5- Lecture 2

DATA TYPES

Data Type Concept

Data Types In A Programming Language Categorize Data In
A Similar Way That Categories Such As Animate, Inanimate
Categorize Objects In Natural Language

Character Data Type

Literal Representation: A Single Character Enclosed In A Pair
Of Single Quotes

• K I Literal Examples: ' A '

Integer Data Type

Literal Representation: An Optionally Signed Sequence Of
Digits With An Optional Exponent

Literal Examples: 156 -320 12E2

Float Data Type

Literal Representation: An Optionally Signed Sequence Of
Digits Followed By A Decimal Point, Another Sequence
Of Digits And An Optional Exponent

Literal Examples: 98.6 2.4 5E-2 -0.4

Invalid Examples
2. E2 Must Be A Digit After The Decimal
. 21 Must Be A Digit Before The Decimal

CMSC130 -6- Lecture 2

ARITHMETIC EXPRESSIONS

Role Of Arithmetic Expressions

Arithmetic Expressions Define Mathematical Formulas

Arithmetic Expressions Contain Operators And Operands
(Literals Or Identifiers Naming Variables Or Constants)

Arithmetic Operators

+ Addition
— Subtraction
• Multiplication
/ Division
REM Remainder
• • Exponentiation

Arithmetic Expression Examples

Integer_Variable + 5

Number * (Value + 2)

Expression Evaluation

Parentheses Can Be Used To Group Subexpressions

In The Absence Of Parentheses Precedence Applies

Highest Precedence **
Middle Precedence * / REM

Lowest Precedence + -

Left To Right Associativity Applies Otherwise

CMSC130 -7- Lecture 2

DECLARATIVE STATEMENTS

Variable Declarations

A Variable Declaration Instructs The Compiler To Reserve A
Memory Location For A Variable Of The Specified Type

Identifiers Are Used To Name Variables

Variable Declaration Examples

Letter: Character;
Whole_Number: Integer;
Real_Number1,Another_Real: Float;

Variable Declaration Syntax

variable_declaration ::=
identifierjlst : type;

Constant Declarations

A Constant Declaration Instructs The Compiler To Reserve
Memory For A Value That Can Not Change

Constant Declaration Examples

Excellent_Grade: CONSTANT Character := 'A';
Course_Number: CONSTANT Integer := 130;

Constant Declaration Syntax

constant_declaration ::=
identifier : CONSTANT type : = value;

CMSC130 -8- Lecture 2

EXECUTABLE STATEMENTS

Assignment Statements

An Assignment Statement Stores The Value Of The
Expression On The Right Side Of The Assignment Into The
Variable On The Left Hand Side

Assignment Statement Examples

Letter := 'B';
Real_Number := Another_Real + 5.0;

Assignment Statement Syntax

assignment_statement ::=
variable : = expression ;

Input/Output Statements

An Input Statement Reads Data In From The Keyboard, An
Output Statement Writes Data Out To The Screen

Input/Output Statement Examples

Get (Whole_Number) ;
Put (Real_Number) ;

Input/Output Statement Syntax

input_statement ::=
Get (variable) ;

output_statement ::=
Put (variable) ;

CMSC130 -9- Lecture 2

COMPLETE PROGRAM SYNTAX

Simple Procedure Syntax

ada_program ::=
WITH Text_IO;
PROCEDURE identifier is

declarations
i/o_package_lnstantiations

BEGIN
statements

END identifier;

Important Points:

1. The Simplest Ada Program Consists Of One Procedure

2. Both Of The Identifiers, Which Name The Procedure,
Must Match

3. Input/Output Package Instantiation Is Required When
Integer And Floating Point I/O Is Required

Input/Output Package Instantiation

integerJo_packageJnstantiation ::=
PACKAGE Int_IO IS NEW Text_IO.Integer_IO
(Integer);

floating_pointJo_packageJnstantiation ::=
PACKAGE Flt_IO IS NEW Text_IO.Float_IO
(Float);

CMSC130 -10- Lecture 2

ADA PROGRAM EXAMPLES

Hello World Program

WITH Text_IO;
PROCEDURE Hello_World IS

-- Declarative Section
BEGIN
--Sequence of Statements
Text_IO.Put_Line("Hello, World! ! ! ") ;

END Hello_World;

Adding Machine Program

UITH Text_IO/
PROCEDURE Adding_Machine IS

Total: Integer;
Users_Entry: Integer;
One: CONSTANT Integer := 1;
PACKAGE Int_IO IS NEW Text_IO.lPteger_IO

(Integer);
BEGIN
Text_IO.Put_Line("Enter an integer");
Int_IO.Get (Users_Entry);
Total := Users_Entry + One;
Text_IO.Put ("The answer is: ");
Int_IO.Put (Total) ;
Text_IO.New_Line;

END Adding Machine;

CMSC130 -11 - Lecture 2

ERROR MESSAGES

Compilation Errors

These Are Errors Detected By The Compiler When The
Program Is Compiled

Syntax Errors:

Misspelling Reserved Words Or Omitting
Punctuation Are Examples

Semantic Errors:

Mismatched Types Are Examples

Run-Time Errors

These Are Errors Detected When The Program Is Run

Logic Errors

These Are Errors That Do Not Generate Error Messages,
They Can Only Be Detected By Observing That Programs
Generate Incorrect Output

Important Points:

1. Ada Is Designed To Encourage Early Error Detection

2. It Is Easier To Find And Correct Compilation Errors Than
It Is To Detect Logic Errors

3. Symbolic Debuggers Can Be A Useful Tool To Uncover
Logic Errors

CMSC130 -12- Lecture 2

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 3

SOFTWARE ENGINEERING
CONCEPTS

SOFTWARE ENGINEERING

Major Issue:

Software Engineering Principles Promote Simple Program
Design

Structured Programming

Structured Programming Simplifies The Statement Level
Control Structure Of Programs By Prohibiting Explicit Gotos

Procedural Abstraction

Procedural Abstraction Simplifies Programs By Limiting The
Size Of Subprograms

Data Abstraction

Data Abstraction Simplifies Programs By Encapsulating Data
Type Definitions Into Packages

Ada And Software Engineering

Ada Supports Structured Programming Because It Contains
High Level Statements That Can Be Nested

Ada Supports Procedural Abstraction Because Ada Permits
The Definition And Invocation Of Subprograms

Ada Supports Data Encapsulation Because Ada Permits Data
Types And Objects To Be Defined Within Packages

CMSC130 -2- Lectures

STRUCTURED PROGRAMMING

Terminology:

Flow Chart: A Diagram That Illustrates The Flow Of Control Of
A Computer Program

Unstructured Programs

Goto Statements Implement Control Flow

Flow Charts Can Contain Crossing Lines

Structured Programs

High-level Statements Implement Control Flow

Flow Charts Never Contain Crossing Lines

Structured Program Control

Fundamental Statements

Simple Statements, Assignment I/O
Conditional Statements If, Case
Iterative Statements For, While And Loop

Methods Of Combining Statements

Sequential
Nested

Important Point:

1. Nesting Is Essential To Structured Programming

CMSC130 -3- Lectures

BUILDING STRUCTURED PROGRAMS

ITERATIVE CONTROL CONDITIONAL CONTROL

SEQUENTIAL
COMBINATION

NESTED COMBINATION

CMSC130 -4- Lecture 3

UNSTRUCTURED CODE EXAMPLE

Unstructured Name Repetition Algorithm

1. Output "What's your name"
2. Input Name
3. Output "How many times should I print your name"
4. Input Repetitions
5. IF Repetitions > 100 GOTO Step 10
6. Output "Your name is", Name
7. Decrement Repetitions
8. IF Repetitions Is Zero GOTO Step 12
9. GOTO Step 6
10. Output "That's too many times, tell me again"
11. GOTO Step 4
12. Output "Done"

Important Points:

1. The Code Is Hard To Read

2. The Steps In The Algorithm Are Tangled Up With One
Another

3. The Code Is Really Delicate, It Is Difficult To Add New
Functions Without Creating Problems

4. Flowcharts Were Traditionally Used For The Design Of
Unstructured Code

CMSC130 -5- Lecture3

STRUCTURED CODE EXAMPLE

Structured Name Repetition Algorithm

Output "What's your name"
Input Name
Set Undetermined To True
WHILE Undetermined LOOP

Output "How many times should I print your name"
Input Repetitions
IF Repetitions > 100 THEN

Output "That's too many times, tell me again"
ELSE

Set Undetermined To False
END IF

END LOOP
FOR Index IN 1..Repetitions LOOP

Output "Your name Is", Name
END LOOP
Output "Done"

Important Points:

1. Structured Code Is Naturally Indented

2. The Indentation Of Structured Code Reflects The Control
Structure

3. Structured Code Is Easier To Read And Easier To Modify

CMSC130 -6- Lectures

PROCEDURAL ABSTRACTION

Terminology:

Top-down Design: A Method Of Program Design That Begins
At The Top, By Subdividing The Whole Problem

Step-wise Refinement: The Process Of Further Subdividing,
Refinement, The Problem Design At Each Step

Structure Chart: A Chart Representing The Functional
Decomposition Of A Problem

Structure Chart Example:

Important Points:

1. The Boxes Of A Functional Decomposition Most Often
Become Subprograms

2. Get And Put Are Examples Of System Defined
Procedural Abstraction

CMSC 130 -7 Lecture 3

TOP-DOWN DESIGN EXAMPLE

Sandwich
Problem

Acquire
Ingredients

Assemble
Sandwich

Eat
Sandwich i

Put Bread
On Plate

Put Mustard
On Bread

Put Baloney
On Bread

Important Point:

1. Computers Only Do What They Are Told, Nothing Is
Obvious, Every Step That Must Be Performed Must Be
Specified

CMSC130 -8- Lecture 3

STEP-WISE REFINEMENT EXAMPLE

Acquire
1 Ingredients

Go To
Store

Find
Ingredients

Pay For
Purchase

Put Bread
On Plate

Open Bread
Package |

Remove Two
Slices

Place On
Plate

CMSC 130 -9 Lecture 3

DATA ABSTRACTION

Terminology:

Encapsulation: Enclosing A Data Type Definition With The
Functions That Define Its Operations

Information Hiding: Concealing The Representation Of A Data
Type And The Implement Of Its Operations

Loose Coupling: Building A System Of Software Components
With Minimal Interdependencies

Software Reusability: Building General Software Components
That Can Be Used In Other Systems

Ada Package Features

An Ada Package Encapsulations A Data Type Definition
Together With The Functions That Define Its Operations

Ada Packages Consist Of Specifications And Bodies, The
Package Body Conceals The Implementation Of The
Operations

Package Specifications Consist Of Public And Private Parts,
The Private Part Conceals The Representation Of Data Types

The Package Specification Defines The Interface Of A
Package And Defines It Coupling With Other Units

Ada Packages Are Reusable Software Components That Can
Be Separately Compiled

CMSC130 -10- Lectures

ENUMERATION TYPES

Enumeration Type Declarations

Enumeration Type Declarations Create New Data Types
Whose Literal Values Are Names, Identifiers

Enumeration Type Declaration Examples

TYPE Days IS (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday);

TYPE Rainbow_Colors IS (Red, Orange, Yellow,
Green, Blue, Indigo, Violet);

Enumeration Type Declaration Syntax

enumeration_type_declaration ::=
TYPE identifier (identifierjist) ;

Terminology:

Overloading: The Use Of A Name Or An Operator For More
Than One Purpose

Overloaded Enumeration Literals

Ada Permits Enumeration Literals To Be Overloaded, In
Addition To Rainbow_Colors, The Following Type Could
Be Defined

TYPE Primary_Colors IS (Red, Blue, Yellow);

The Names Red, Blue And Yellow Belong To Two Types

CMSC130 -11 - Lecture 3

ENUMERATION TYPE ATTRIBUTES & I/O

Terminology:

Attribute: A Constant Value Or A Function Associated With A
Data Type

Attributes

First First Value Of The Type

Last Last Value Of The Type

Pos A Function That Maps Enumeration Literals To Their
Position In The Type Definition

Val A Function That Maps Positions To Enumeration
Literals

Succ Successor Function

Pred Predecessor Function

Attribute Examples

Days'First = Monday
Rainbow_Colors'Pos(Orange) = 1
Primary_Colors'Succ(Red) = Blue

Enumeration I/O Syntax:

enumerationjo ::=
PACKAGE identifier is NEW Text_iO.
Enumeration 10 (type) ;

CMSC130 -12- Lecture 3

ENUMERATION TYPE EXAMPLE

Yesterday And Tomorrow Program

WITH Text_IO;
PROCEDURE Yesterday_And_Tomorrow IS

TYPE Days IS (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday);

PACKAGE Days_IO IS NEW Text_IO.
Enumeration_IO(Days);

Today, Yesterday, Tomorrov;: Days;
BEGIN
Text_IO.Put_Line("What Day Is Today?");
Days_IO.Get (Today) ;
Yesterday := Days'Pred(Today);
Tomorrow := Days'Succ(Today);
Text_IO.Put("Yesterday was ");
Days_IO.Put (Yesterday);
Text_IO.New_Line;
Text_IO.Put ("Tomorrow will be ");
Days_IO.Put(Tomorrow);
Text_IO.New_Line;

END Yesterday_And_Tomorrow;

Important Point:

1. A Run-Time Error Will Occur If Monday Or Sunday Is
Entered, Monday Has No Predecessor, Sunday Has No
Successor

CMSC130 -13- Leuure 3

CMSC 130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 4

CONDITIONAL CONTROL

SIMPLE CONDITIONS

Boolean Data Type

The Boolean Data Type Is A Predefined Enumeration Type

TYPE Boolean IS (False,True);

Relational Operators

Symbol Meaning

< Less Than

<= Less Than Or Equal

i = Equal

/= Not Equal

> Greater Than

>= Greater Than Or Equal

Condition Syntax

condition ::=
operand relational_operator operand

Important Point:

1. The Operands Of Simple Conditions Are Either Variables,
Named Constants Or Literal Constants

CMSC130 Lecture 4

SIMPLE CONDITION EXAMPLES

Type Checking Rule

The Type Of The Two Operands Of A Condition Must Match,
They Must Be The Same Type

Variable Declarations

Whole_Number: Integer := 1;

Decimal_Number: CONSTANT Float := 1.0;

Truth_Value: Boolean;

Letter: Characters-

Examples Of Valid Conditions

Whole_Number < 5

Truth_Value = True

Letter > 'A'

Examples Of Invalid Conditions

Whole_Number < Decimal_Number

Truth_Value = 5

Decimal_Number > 2

Letter = Whole Number

CMSC130 -3- Lecture 4

SIMPLE IF STATEMENT

Simple If Statement Syntax

simplejf_statement ::=
IF condition THEN

sequence_of_statements
END IF;

Absolute Values Procedure

WITH Text_IO;
PROCEDURE Absolute_Values IS

Absolute, Number: Integer;
PACKAGE Int_IO IS NEW Text_IO.Integer_IO

(Integer);
BEGIN

Text_IO.Put("Enter An Integer: ");
Int_IO.Get(Number);
Absolute := ABS Number;
Text_IO.Put("Absolute Value With ABS ");
Int_IO.Put(Absolute);
Text_IO.New_Line;
IF Number < 0 THEN

Number := -Number;
END IF;
Text_IO.Put("Absolute Value With IF ");
Int_IO.Put(Number);
Text_IO.New_Line;

END Absolute Values;

CMSC130 -4- Lecture 4

IF STATEMENT WITH ELSE CLAUSE

If Else Statement Syntax

if_else_statement ::=
IF condition THEN

sequence_of_statemenis
ELSE

sequence_of_statements
END IF;

Circular Tomorrow Procedure

WITH Text_IO;
PROCEDURE Circular_Tomorrow IS

TYPE Days IS (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday)/

PACKAGE Days_IO IS NEW Text_IO.
Enumeration_IO(Days);

Today, Tomorrow: Days;
BEGIN

Text^O.Put^ineC'What Day Is Today?");
Days_IO.Get(Today);
IF Today /= Sunday THEN

Tomorrow := Days'Succ(Today);
ELSE

Tomorrow := Monday;
END IF;
Text_IO.Put("Tomorrow will be ");
Days_IO.Put(Tomorrow); Text_IO.New_Line;

END Circular_Tomorrow;

CMSC130 -5- Lecture 4

DESCENDING LOOP EXAMPLE

Rocket Launch Program

WITH Text_IO;
PROCEDURE Rocket_Launch 13

PACKAGE Int_IO IS NEW Text_IO.Integer_IO
(Integer);

BEGIN
FOR Launch_Count IN REVERSE 1..3 LOOP

Int_IO.Put(Launch_Count);
IF Launch_Count = 3 THEN

Text_IO.Put_Line
("Start launch computers");

ELSIF Launch_Count = 2 THEN
Text_IO.Put_Line

("Release rocket stabilizers")/
ELSIF Launch_Count = 1 THEN

Text_IO.Put_Line
("Start engine ignition");

END IF;
END LOOP;
Text_IO.Put_Line("Blast-Off") ;

END Rocket_Launch;

Important Point:

1. In A Descending For Statement The Range Of Values Is
Specified In Ascending Order

CMSC130 -6- Lectures

ENUMERATION RANGE EXAMPLE

Total Weeks Earnings Program

WITH Text_IO;
PROCEDURE Total_Weeks_Earnings IS

TYPE Days_Of_Week IS (Sun, Mon, Tue, Wed,
Thu, Fri, Sat);

Weeks_Income, Tociays_Income: Float := 0.0/
PACKAGE Day_IO IS NEW

Text_IO.Enumeration_IO(Days_Of_Week)/
PACKAGE Income_IO IS NEW Text_IO.Float_IO

(Float)/
BEGIN

FOR Day IN Mon..Fri LOOP
Text_IO.New_Line;
Text_IO.Put("Enter salary & tips for ");
Day_IO.Put(Day);
Income__IO.Get (Todays_Income) ;
Weeks_Income := Weeks_Income +

Todays_Income;
END LOOP;
Text_IO.New_Line(3) ;
Text_IO.Put("Total for the week is ");
Income_IO.Put(Weeks_Income) ;
Text_IO.New_Li ne ;

END Total Weeks Earnings;

CMSC130 -7- Lectures

NESTED LOOP EXAMPLE

Oldest Go First Program

WITH Text_IO;
PROCEDURE 01dest_Go_First IS

TYPE Months IS (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, Dec);

PACKAGE Age_IO IS NEW Text_IO.Integer_IO
(Integer);

PACKAGE Months_IO IS NEW
Text_IO.Enumeration_IO(Months);

BEGIN
FOR Age IN REVERSE 0..100 LOOP

FOR Month_Born IN Jan..Dec LOOP
Text_IO.Put("Now Serving: ");
Age_IO.Put(Age)/
Text_IO.Put(" year olds born in ");
Months_IO.Put(Month_Born) /
Text_IO.New_Line/

END LOOP;
END LOOP;

END 01dest_Go_First;

Important Point:

1. The Statements In The Body Of The Innermost Loop Are
Executed 1212 Times

12 (Months) x 101 (Ages) = 1212 (Iterations)

CMSC130 -8- Lectures

COUNTING EXECUTED STATEMENTS

Major Issues:

1. There Is Always An Upper Bound To The Number Of
Statements Executed By Programs Containing Only
Conditional Control Statements

2. The Number Of Statements Executed By Programs
Contains Definite Iteration May Be Unbounded

Triangular Numbers Program

BEGIN 1
Text_IO.Put("Enter Number: ") ; 1
Int_IO.Get(Number)/ 1
Triangle := 0/ 1
FOR Index IN 1..Number LOOP n

Triangle := Triangle + Index; n
END LOOP; n
Text_IO.Put("Triangular Number = "); 1
Int_IO.Put(Triangle); 1

END Triangular_Numbers; 1

Function Determining Executed Statements:

f{n) = 3n + 7

Important Point:

1. The Number Of Statements Executed Is Unbounded
Because It Depends On The Input Value For Number

CMSC130 -9- Lectures

ALGORITHM EFFICIENCY

Linear Efficiency:

Programs Containing Single Loops Have Linear Efficiency,
The Function That Measures The Executed Statements Is Of
The Form:

/(n) = an + b

Quadratic Efficiency

Programs Containing Nested Loops As Follows:

FOR I IN 1..n LOOP
FOR J IN 1..n LOOP

Have Quadratic Efficiency, The Function That Measures The
Executed Statements Is Of The Form:

/(n) = an2 + bn + c

Comparing Algorithms:

Algorithms With Quadratic Execution Functions Are Less
Efficient Than Algorithms With Linear Execution Functions

Important Points:

1. All Problems Can Be Solved With More Than One
Algorithm

2. When The Efficiency Of The Algorithms For A Given
Problem Vary, The Most Efficient Is Preferred

CMSC130 -10- Lecture 6

SUBTYPE DECLARATIONS

Subtype Concept

The Rationale For Using Subtype Declarations Is To Limit The
Range Of Values And Detect Out Of Range Conditions If
They Should Occur

Subtype Declaration Syntax

subtype_declaration ::=
SUBTYPE Identifier is type RANGE

simple_expression . .simple_expression ;

Subtype Declaration Examples

SUBTYPE Days_In_Month IS Integer RANGE
1..31/

SUBTYPE Weekdays IS Days_Of_Week RANGE
Monday..Friday;

Range Checking Relational Operators

IN Determines Whether A Value Is In A Range

NOT IN Determines Whether A Value Is Not In A Range

Range Checking Expression Examples

3 IN 5. .10 False

Wednesday IN Monday..Friday True

40 NOT IN i. .10 True

CMSC130 -11- Lecture 6

SUBTYPE PROGRAM EXAMPLE

Summer Only Program

WITH Text_IO/
PROCEDURE Summer_Only IS

TYPE Months IS (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, Dec;;

SUBTYPE Summer_Months IS Months RANGE
Jun..Aug /

PACKAGE Age_IO IS NEW Text_IO.Integer_IO
(Integer);

PACKAGE Months_IO IS NEW
Text_IO.Enumeration_IO(Months) ;

BEGIN
FOR Age IN REVERSE 0..100 LOOP
FOR Month_Born IN Jan..Dec LOOP

IF Month_Born IN Summer_Months THEN
Text_IO.Put("Now Serving: ")/
Age_IO.Put(Age);

Text_IO.Put(" year olds born in "
"the summer month of ");

Months_IO.Put (Month_Born) ;
Text_IO.New_Line ;

END IF;
END LOOP;

END LOOP;
END Summer Only;

CMSC130 -12- Lectures

CMSG 130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 7

INDEFINITE ITERATION AND
PROCEDURES

INDEFINITE ITERATION CONCEPT

Major Issues:

1. Programs Containing Only Conditional Control And
Definite Iteration Always Terminate

2. Certain Problems Require Indefinite Iterative Control To
Be Solved

Terminology:

Indefinite Iteration: Control Mechanism That 'Permits The
Repetition Of A Group Of Statements While A Specified
Condition Remains True

Important Points:

1. Programs Containing Indefinite Iteration Can Get Into
"Infinite Loops" And Never Terminate

2. Indefinite Iteration Can Be Used To Solve Any Problem
Solved With Definite Iteration

A Simple Problem Requiring Indefinite Iteration
Summing Positive Integers

1. Read In Integers From The Keyboard And Sum The
Numbers

2. Stop When A Number That Is Not Positive Is Read In

3. Print Out The Sum

CMSC130 -2- Lecture?

WHILE STATEMENT

While Statement Syntax

while_statement ::=
WHILE condition LOOP

sequence_of_statements
END LOOP;

Static Semantic Rule:

1. The Condition Must Be A Boolean Expression

While Statement Flowchart

CMSC130 -3- Lecture 7

FLAG CONTROLLED LOOP EXAMPLE

Sum_Positive_With_Flag Procedure

WITH Text_IO;
PROCEDURE Sum_Positive_With_Flag IS

Number: Integer;
Sum:Integer := 0;
Positive: Boolean := True;
PACKAGE Int_IO IS NEW

Text_IO.Integer_IO(Integer);
BEGIN
WHILE Positive LOOP

Int_IO.Get(Number);
IF Number > 0 THEN

Sum := Sum + Number;
Positive := True;

ELSE
Positive := False;

END IF;
END LOOP;
Text_IO.Put("The Sum Is ");
Int_IO.Put (Sum) ;
Text_IO.New_Line;

END Sum_Positive_With_Flag;

Important Point:

1. The Flag Controlling The Loop Must Be Initialized Prior
To The Loop And Must Be Set Within The Loop

CMSC130 -4- Lecture?

SENTINEL CONTROLLED LOOP EXAMPLE

Sum_Positive_With_Sentinel Procedure

WITH Text_IO;
PROCEDURE Sum_Positive_With_Sentinel IS

Number: Integer;
Sum:Integer := 0;
PACKAGE Int_IO IS NEW

Text_IO.Integer_IO(Integer);
BEGIN

Int_IO.Get (Number) /
WHILE Number > 0 LOOP

Sum := Sum + Number;
Int_IO.Get(Number);

END LOOP;
Text_IO.Put("The Sum Is ");
Int_IO.Put(Sum);
Text_IO.New_Line;

END Sum_Positive_With_Sentinel;

Important Points:

1. Controlling A Loop With A Sentinel Requires Reading
The Input Twice
a) A "Priming Read" Is Required Prior To The Loop
b) Another Get Is Required At The End Of The Loop

2. The Sentinel Must Be Compared In The While Condition
To Determine Loop Termination

CMSC130 -5- Lecture?

DEFINITE VS INDEFINITE ITERATION

Major Issue:

1. Every For Loop Can Be Replaced By A While Loop, The
Reverse Is Not True

FOR Index IN Lower..Upper LOOP
sequence_of_statements

END LOOP;

Index := Lower;
WHILE Index <= Upper LOOP

sequence_of_statements
Index := Index + 1;

END LOOP;

INFINITE LOOPS

Nonterminating While Loop

Index := 1/
WHILE Index /= 0 LOOP

Index := Index + 1;
END LOOP;

Important Point:

1. While Loops That Do Not Converge To The Termination
Condition Are Infinite Loops

CMSC130 -6- Lecture?

LOOP AND EXIT STATEMENTS

Loop Statement Syntax

loop_statement ::=
LOOP

sequence_of_statements
END LOOP;

Exit Statement Syntax

exit_statement ::=
EXIT [WHEN condition] ;

Static Semantic Rule:

1. An Exit Statement Can Only Appear Within The Body Of
A For, While Or Loop Statement

Loop Exit Combined Syntax

LOOP
sequence_of_statements
EXIT [WHEN condition] ;
sequence_of_statements

END LOOP;

Important Points:

1. A Loop Statement Is Most Useful When The Loop
Terminating Condition Can Not Be Determined At The
Top Of The Loop

CMSC130 -7- Lecture?

LOOP STATEMENT EXAMPLE

Count Letters Program

WITH Text_IO;
PROCEDURE Count_Letters IS

Lower^ase^ Upper_Case: Natural := 0/
Char: Character;
PACKAGE Count_IO IS NEW Text_IO.Integer_IO

(Natural);
BEGIN

Text_IO.Put_Line("Enter a sentence");
WHILE NOT Text_IO.End_Of_Line LOOP

Text 10.Get(Char);
EXIT WHEN Char = _ i i

/

IF Char IN 'a'..'z' THEN
Lower_Case := Lower_Case + 1;

ELSIF Char IN ,A,..,Z, THEN
Upper_Case := Upper_Case + 1;

END IF;
END LOOP;
Text_I0.Put("Number of lower case = ");
Count_IO.Put(Lower_Case) ;
Text_IO.New_Line;
Text_IO.Put("Number of upper case = ");
Count_IO.Put(Upper_Case);
Text_IO.New_Line;

END Count Letters;

CMSC130 -8- Lecture?

PROCEDURES

Procedure Concept

Procedures Differ From Functions In That They Do Not
Return Values, But Their Parameters Can Return Values

Procedure Declaration Syntax

procedure_declaration ::=
PROCEDURE identifier [formal_parameters] is

{declarations}
BEGIN

sequence_of_statements
END identifier;

formal_parameters ::=
(formal_parameter { Formalparameter)

formal parameter ::=
identifier {, identifier}: [mode] type

mode ::=
IN | OUT | IN OUT

Static Semantic Rules:

1. The Type Of The Actual And Formal Parameters Must
Match

2. Parameters Of In Mode Are Read Only And Parameters
Of Out Mode Are Write Only

CMSC130 -9- Lecture?

PROCEDURE EXAMPLE

Above And Below Procedure

WITH Text_IO;
PROCEDURE Above_And_Below(

Number: IN Integer;
Above_Count: OUT Natural;
Below_Count: OUT Natural)

IS
Value: Integer;
Above, Below: Natural := 0;
PACKAGE Int_IO IS NEW Text_IO.Integer_IO

(Integer);
BEGIN

Int_IO.Get(Value);
WHILE Value /= Number LOOP

IF Value > Number THEN
Above := Above + 1;

ELSE
Below := Below + 1;

END IF;
Int_IO.Get(Value);

END LOOP;
Above_Count := Above;
Below_Count := Below;

END Above_And_Below;

Important Point:

1. Out Parameters Are Write Only

CMSC130 -10- Lecture?

PROGRAM CORRECTNESS

Axiomatic Semantics

A Method For Defining The Meaning Of Procedures That
Uses Assertions, Statements Of Formal Logic Or English,

Assertions

Precondition

An Assertion That Is True Prior To The Execution Of A
Procedure

Postcondition

An Assertion That Is True After The Execution Of A
Procedure

Loop Invariant

An Assertion That Is True Prior To The Execution Of A
Loop, After Each Iteration And After The Execution Of
The Loop Is Completed

Proof Of Correctness

The Precondition And Postcondition Define The Meaning Of A
Procedure

A Proof Can Establish Correctness, That The Algorithm
Accomplishes The Goal The Meaning Defines

Establishing That The Loop Terminates Is Necessary To
Prove Total Correctness

CMSC130 -11- Lecture?

LOOP INVARIANT EXAMPLE

Quotient Remainder Procedure

PROCEDURE Quotient_Remainder (
Dividend: IN Integer; -- di
Divisor: IN Integer; -- d2
Final_Quotient: OUT Integer;
Final_Remainder: OUT Integer)

IS
Quotient: Integer; --q
Remainder: Integer; —r

BEGIN
--Precondition
--(di > 0) A (d2 > 0)

Quotient := 0;
Remainder := Dividend;
WHILE Remainder >= Divisor LOOP

--Loop Invariant
— (di = q * d2 + r) A (r > d2 > 0)
Remainder := Remainder - Divisors-
Quotient := Quotient + 1;

END LOOP;
—Postcondition
— (di = q * d2 + r) A (d2 > r > 0)
Final_Quotient := Quotient;
Final_Remainder := Remainder;

END Quotient Remainder;

CMSC130 -12- Lecture?

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 8

SCALAR DATA TYPES AND
EXPRESSIONS

SCALAR DATA TYPES

Ada Data Type Hierarchy

Scalar Data Types

Discrete Types
Integer Types
Enumeration Types

Boolean Type

Character Type

Real Types
Floating Point

Fixed Point
Composite Data Types

Array Types

Record Types
Access Types

Terminology:

Scalar Data Type: A Data Type Whose Elements Consist Of A
Single Value

Discrete Type: A Data Type Whose Elements Have
Successors And Predecessors

Important Point:

1. Access Types Will Not Be Discussed In This Course

CMSC130 -2- Lectures

NUMERIC OPERATORS

Operation
II

Operator Left Right Result

Addition + Numeric Numeric Numeric

Subtraction — Numeric Numeric Numeric

Multiplication • Numeric Numeric Numeric

1 Division / Numeric Numeric Numeric

1 Remainder REM integer Integer Integer

Modulo MOD Integer Integer Integer

Exponentiation • • Integer Integer Integer

Exponentiation • * Float Integer Float |

Important Points:

1. The Remainder And Modulo Operators Are Only Defined
On Integer Operands

2. The Remainder And Modulo Operators Produce The
Same Results On Positive Integers

3. The Type Of The Left And Right Operands Must Be The
Same Except In The Case Of Exponentiation

CMSC130 3- Lecture 8

EXPRESSION EVALUATION

Expression Evaluation Rules

1. Parentheses

2. Precedence

Highest ABS **
Second Highest MOD REM * /
Third Highest + - (Unary)
Lowest + - (Binary)

3. Left To Right Associative

Expression Evaluation Examples

(2 + 3) * 5 25

Parentheses Force Addition Before Multiplication

8-6/2 5

Precedence Causes Division Before Subtraction

9-2-1 6

Associativity Ensures Left Subtraction Before Right

Expressions Requiring Parentheses

2 ** 2 ** 3

The Above Expression Is Syntactically Incorrect, Ada
Requires That It Be Parenthesized

CMSC130 -4- Lectures

TYPE CONVERSION

Major Issue:

Integer And Floating Point Number Can Be Mixed If Explicit
Type Conversion Is Used

Type Conversion Fxample

I: Integer;
F: Float;
I := Integer(F); --Rounded
F := Float(I);

FLOATING POINT NUMBERS

Floating Point Representation

Mantissa Controls Precision
Exponent Controls Range

Terminology:

Underflow: A Number Which Can Not Be Represented
Because It Is Too Close To Zero

Overflow: A Number Which Can Not Be Represented
Because It Is Too Far From Zero

Representation Error: Error Which Occurs Converting
Decimal Numbers Such As 0.1 To Binary

CMSC (30 -5- Lectures

NUMERIC EXAMPLE

Sphere Formulas

4
Volume = gTirS Surface Area = 47cr2

Sphere Calculations Program

WITH Text_IO;
PROCEDURE Sphere_Calculations IS

Pi: CONSTANT Float := 3.14159;
Radius,Volume,Surface_Area: Float;
PACKAGE Flt_IO IS NEW Text_IO.Float_IO

(Float);
BEGIN

Text_IO.Put("Enter Sphere Radius: ");
Flt_IO.Get(Radius);
Volume := (4.0/3.0) * Pi * Radius ** 3;
Surface_Area := 4.0 * Pi * Radius ** 2;
Text_IO.Put("Volume = ");
Flt_IO.Put(Volume);
Text_IO.New_Line;
Text_IO.Put("Surface Area = ");
Flt_IO.Put(Surface_Area);
Text_IO.New_Line;

END Sphere_Calculations;

Important Point:

1. The Types Around ** Do Not Match 3ut Are Compatible
With Function Specification O

CMSC130 -6- Lectures

LOGICAL OPERATORS

1 x
Y NOT X X AND Y X OR Y X XOR Y

True True False True True False |

True False False False True True |

1 False True True False True True

False False True False False False

Precedence Of All Operators

Highest
Second iighest
Third Highest
Fourth Highest
Fifth Highest
Lowest

NOT ABS **

MOD REM * /

+ - (Unary)
+ - & (Binary)

AND OR XOR

Compound Boolean Expressions

3 > 2 AND 8=4

2 <= 2 OR 6 = 5

False

True

Important Point:

1. Compound Expressions With Mixed Logical Operators
Require Parentheses

X AND Y OR Z Syntax Error

CMSC 130 Lecture 8

SHORT CIRCUIT OPERATORS

Short Circuit Principle

False AND Anything = False

True OR Anything = True

Short Circuit Operators

Short Circuit Conjunction AND THEN

Short Circuit Disjunction OR ELSE

Short Circuit Evaluation

1. Left Operand Is Always Evaluated First

2. Right Operand Is Not Evaluated When
a) Left Operand Is False And Operator Is And Then
b) Right Operand Is True And Operator Is Or Else

Short Circuit Example

Y /= 0 AND THEN X / Y > 0

Use Of The Short Circuit Operator Prevents Evaluation Of
The Right Operand When The Left Operator Is False, Which
Prevents Division By Zero

Important Point:

1. With Ordinary Logical Operators, Either Operand May Be
Evaluated First And Both Are Always Evaluated

CMSC130 -8- Lectures

BOOLEAN EXPRESSION EXAMPLE

Diagnose Program

WITH Text_IO;
PROCEDURE Diagnose IS

Smiling, Laughing, Singing, Frowning,
Weeping, Wailing: Boolean;

BEGIN
Smiling:= False;
Laughing := False;
Singing := True;
Frowning ;= False;
Weeping := True;
Wailing := True;
IF Smiling AND THEN

(Laughing OR Singing) THEN
Text_IO.Put_Line("Must be happy");

ELSIF Frowning OR ELSE
(Weeping AND Wailing) THEN
Text_IO.Put_Line
("Must be angry or depressed");

END IF;
END Diagnose;

Important Points:

1. The Parentheses In These Boolean Expressions Are
Required

2. Non Short Circuit Operators Could Have Been Used

CMSC130 -9- Lectures

CHARACTER DATA TYPE

Nonprintable Characters

Nonprintable Characters Can Be Represented By Name

ASCII. BEL Bell Character
ASCII. CR Carriage Return
ASCII.LF Line Feed

Control Characters Program

WITH Text_IO/
PROCEDURE Control_Characters IS
BEGIN

Text_IO.Put_Line
("This one put_line statement" &
ASCII.CR & ASCII.LF &
"generates several lines of " &
ASCII.CR & ASCII.LF &
"text on the screen " & ASCII.CR &
"and overstrikes the third line " &
"because no linefeed was issued");

Text_IO.New_Line(3);
Text_IO.Put_Line

("Non-printing characters can ring " &
"the terminals bell" & ASCII.BEL);

Text_IO.New_Line(3);
Text_IO.Put_Line("ASCII.ESC is also " &

"used for cursor-positioning");
END Control_Characters;

CMSC130 -10- Lectures

CASE STATEMENT

Case Statement Syntax

case_statement ::=
CASE expression is

case_statement_alternative
{case_statement_altemative}

END CASE;

case_statement_alternative ::=
WHEN choice {| choice} =>
sequence_of_statements

choice ::=simple_expression | discrete_range | OTHERS

coA77ponenf_simple_name

Semantic Rules:

1. The Expression Must Be Of A Discrete Type, Integer Or
Enumerated

2. The Type Of The Choices Must Match The Type Of The
Expression

3. Every Possible Value Of The Expression Must Be
Specified By Exactly One Of The Choices Or By Others

4. Every Choice Must Be Static (Able To Be Evaluated At
Compile Time)

5. If Used, The When Others Clause Must Be Last

CMSC130 -11- Lectures

CASE STATEMENT EXAMPLE

Favorite Colors And Numbers Program

WITH Text_IO;
PROCEDURE Favorite_Colors_And_Numbers IS

TYPE Color_Type IS (Red, Pucef Blue,
Purple, White, Magenta, Beige)/

Favorite_Number: Integer := 13;
Favorite_Color: Color_Type := Beige;

BEGIN
CASE Favorite_Number IS
WHEN Integer'First..-1 =>

Text_IO.Put_Line("How avant-garde!");
WHEN 13 =>

Text_IO.Put_Line("How bold");
WHEN 0. .12 | 14. .99 =>

Text_IO.Put_Line("How ordinary");
WHEN OTHERS =>

Text_IO.Put_Line("You think big");
END CASE;
CASE Favorite_Color IS
WHEN Red | White I Blue =>

Text_IO.Put_Line("How patriotic!");
WHEN Puce | Purple | Magenta I Beige =>

Text_IO.Put_Line("How unusual!");
END CASE;

END Favorite Colors And Numbers;

CMSC130 -12- Lectures

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 9

SIMPLE ARRAY TYPES

ARRAY DECLARATIONS

Array Definition Syntax

array_definition ::= ARRAY (discrete_range) OF type

Constrained Array Type Declarations:

-- An Array For Hours Worked For A Week

TYPE Days_Of_Week IS (Mon, Tue, Wed, Thu,
Fri, Sat, Sun);

TYPE Hours IS ARRAY(Days_Of_Week) OF Float;

-- An Array To Contain 10 Logical Values

TYPE Boolean_Array IS ARRAY(1..10) OF
Boolean;

-- An Array Of Grade Frequencies

SUBTYPE Grades IS INTEGER RANGE 0..100;

TYPE Frequencies IS ARRAY(Grades) OF
Natural;

Important Points:

1. Arrays Collect Together Data Elements Of The Same
Type

2. The Type Of The Subscripts Must Be A Discrete Type,
But The Components May Be Any Type

CMSC130 -2- Lecture 9

ARRAY SUBSCRIPTS

Role Of Array Subscripts

Array Subscripts Select One Element From The Array

Schedule: Hours;

Schedule(Men)

Schedule(Tue)

Schedule(Wed)

Schedule(Thu)

Schedule(Fri)

Schedule(Sat)

Schedule(Sun)

8.0

8.0

8.0

8.0

8.0

0.0

0.0

Important Point:

1. A Subscript Can Be A Constant Or A Variable

Types Of Array Subscripts

Semantically Significant Subscripts

Subscripts Of Arrays That A Collection Of Values
(Subscripts Have No Particular Meaning)

CMSC130 Lecture 9

ARRAY AGGREGATES

Terminology:

Array Aggregate: A Literal Constant Which Represents The
Value Of A Complete Array

Array Aggregate Syntax

aggregate ::=
(component_association {, component_association})

component_association ::=
[choice {| choice} =>] expression

choice ::= sinnple_expression | discrete_range | OTHERS

Array Object Declaration:

Worked: Hours;

Array Aggregates Assignments:

Worked := (4.0,4.0,8.0,8.0,8.0,0.0,0.0);

Worked := (4 . 0,4.0,8.0,8.0,8.0,OTHERS =>
0.0);

Worked := (Sat|Sun => 0.0, Wed..Fri => 8.0,
Mon..Tue => 4.0);

Important Point:

1. Named Aggregates Values Can Appear In Any Order

CMSC130 -4- Lecture 9

ARRAY WITH SEMANTICALLY
SIGNIFICANT SUBSCRIPTS

Grade Frequency Program

WITH Text_IO;
PROCEDURE Grade_Frequency IS

SUBTYPE Grades IS Integer RANGE 0..100;
SUBTYPE Students IS Integer RANGE 1..30;
TYPE Frequencies IS ARRAY(Grades) OF
Natural;

Grade: Grades;
Frequency: Frequencies := (OTHERS => 0);
PACKAGE Int_IO IS NEW Text_IO.Integer_IO

(Integer);
BEGIN

FOR Student_Index IN Students LOOP
Text_IO.Put("Enter Grade: ");
Int_IO.Get (Grade) ;
Frequency (Grade) := Frequency(Grade)

+ 1;
END LOOP;
FOR Grade_Index IN Grades LOOP

Int_IO.Put (Grade_Index);
Int_IO.Put (Frequency(Grade_Index));
Text_IO.New_Line;

END LOOP;
END Grade Frequency;

CMSC130 -5- Lectures

ARRAY AS COLLECTION

Average Measurements Program

WITH Text_IO;
PROCEDURE Average_Measurements IS

SUBTYPE Num_Measurements_Type IS Integer
RANGE 1..10;

TYPE Measurement_Array_Type IS
ARRAY(Num_Measurements_Type) OF Float;

Measurement_Array: Measurement_Array_Type;
Totalf Average: Float;
PACKAGE Measurement_IO IS NEW Text_IO.
Float_IO(Float);

BEGIN
FOR I IN 1..10 LOOP
Text_IO.Put_Line("Enter a measurement");
Measurement_IO.Get

(Measurement_Array(I));
END LOOP;
Total := 0.0;
FOR I IN 1..10 LOOP

Total := Total + Measurement_Array(I);
END LOOP;
Average := Total / 10.0 ;
Text_IO.Put_Line("The average is ");
Measurement_IO.Put(Average);
Text_IO.New_Line;

END Average_Measurements;

CMSC130 -6- Lecture 9

ARRAYS OF AN ANONYMOUS TYPE

Anonymous Array Declaration Syntax

anonymous_array_declaration ::=
identifierjist: ARRAY (discrete_range) OF type;

Anonymous Array Object Declarations:

Array_l,Array_2: ARRAY (1..10) OF Integer;

Array_3: ARRAY (1..10) OF Integers-

important Points:

1. Anonymous Array Object Declarations Should Only Be
Used For "One Of A Kind" Arrays

2. All Three Arrays Are All Of Different Types

ARRAY PARAMETERS

Terminology:

Call By Reference: The Address Of A Parameter Is Passed
Instead Of The Parameter Itself

Important Point:

1. Array Parameters Can Be Passed By Reference Or By
Value-Result, The Compiler Chooses The Method

CMSC130 -7- Lectures

ARRAY PARAMETER EXAMPLE

Sum Array Program

WITH Text_IO;
PROCEDURE Sum_Array IS

TYPE Integer_Array_Type IS
ARRAY(1..5) OF Integer;

Actual_Array: Integer_Array_Type :=
(21, 4, 5, 11, 26);

Sum: Integer;
PACKAGE Int_IO IS NEW Text_IO.Integer_IO

(Integer);
PROCEDURE Calculate_Sum(Formal_Array: IN

Integer_Array_Type;
Sum: OUT Integer) IS
Total: Integer;

BEGIN
Total := 0;
FOR I IN 1..5 LOOP

Total := Total + Formal_Array(I) ;
END LOOP;
Sum := Total;

END Calculate_Sum;
BEGIN

Calculate_Sum (Actual_Array, Sum);
Text_IO.Put_Line("The sum is ");
Int_IO.Put(Sum);
Text_IO.New_Line;

END Sum_Array;

CMSC130 -8- Lecture 9

STRING TYPES

String Literals

A Sequence Of Characters Enclosed In Double Quotes
String Literals Must Not Cro** Line Boundaries

String Assignment

String Lengths Must Match

Some_String: String (1..5);
Some_String :- "This String"; --Error

String Concatenation

Creates A Single String From Two Strings

Text_IO.Put("This Output Is Too Long" &
"To Fit One A Single Line");

String Slices

Extracts Substrings From Strings

Any_String := "A Several Word String";
Text_IO.Put(Any_String(3. .9)) ;
— Outputs The Word "Several"

String Comparisons

Left-Most Characters Are Compared First

"Cat" > "Dog" False
"Car" < "Cart" True

CMSC130 -9- Lecture9

STRING SLICE EXAMPLE

Slice Program

WITH Text_IO;
PROCEDURE Slice IS

SUBTYPE Bounds_l IS Integer RANGE 1..5;
SUBTYPE Bounds_2 IS Integer RANGE 1..11;
Pattern: String(Bounds_l);
Text: String(Bounds_2) := "Sample Text";
Match: Boolean := False;
Upper,Finish: Natural;
PACKAGE Bool_IO IS NEW

Text_IO.Enumeration_IO(Boolean);
BEGIN

Text_IO.Put("Enter Pattern: ");
Text_IO.Get(Pattern) ;
Unper := Bounds_2'Last -

Bounds_l'Last + 1;
FOR Start IN Bounds_2'First..Upper LOOP

Finish := Start + Bounds_l'Last - 1;
IF Pattern = Text(Start..Finish) THEN

Match := True;
EXIT;

END IF;
END LOOP;
Bool_IO.Put(Match);

END Slice;

CMSC 130 -10- Lectures

ARRAY SEARCHING

Linear Search Procedure

WITH Text_IO;
PROCEDURE Linear_Search IS

SUBTYPE Bounds IS Integer RANGE 1..10;
Table: ARRAY(Bounds) OF Integer :=

(31,15,8,34,5,81,2,97,30,95);
Value: Integer;
Found: Boolean;
PACKAGE Int_IO IS NEW Text_IO.Integer_IO

(Integer);
BEGIN

Text_IO.Put("Enter Value: ");
Int_IO.Get(Value);
FOR Index IN Bounds LOOP

Found := Table(Index) = Value;
EXIT WHEN Found;

END LOOP;
IF Found THEN
Text_IO.Put("Value In Table");

ELSE
Text_IO.Put("Value Not In Table");

END IF;
Text_IO.New_Line;

END Linear_Search;

Important Point:

1. The Execution Time Increases Linearly

CMSC 130 -11 - Lecture 9

BIG O CONCEPT

Execution Time function For Linear Search

f(n) = 3n + 6, Where n Is The Table Size

Formal Definition Of Big-O:

f(n) e 0(g(n)) If And Only If There Exist Two Constants m and
no such that \f(n)\ < m|g(n)| for n > no

Big-0 Proof

3n + 6 G O(n) Because |3n + 6| < 9|n| for n > 1

Big-0 Relationships

0(log x) c O(x) c 0(x2) c= 0(x3) c O(ex)

0(log x) Is Most Efficient, O(ex) Is Least Efficient

CMSC130 12- Lecture 9

FUNCTION EXAMPLE

Estimate Tax Procedure

WITH Text_IO;
PROCEDURE Estimate_Tax IS

Income, Tax_Bill: Float;
FUNCTION Federal_Taxes(Income,

Tax_Rate: Float) RETURN Float IS
BEGIN

RETURN Income * Tax_Rate;
END Federal_Taxes;
PACKAGE Income_IO IS NEW Text_IO.Float_IO

(Float) ;
BEGIN

Text_IO.Put_Line("What is your income");
Income_IO.Get(Income);
IF Income <= 18000.00 THEN

Tax_Bill := Federal_Taxes(Income, 0.15);
ELSE

Tax_Bill := Federal_Taxes
(18000.00, 0.15);

Tax_Bill := Tax_Bill + Federal_Taxes
(Income - 18000.00, 0.31);

END IF;
Text_IO.Put("Your approximate taxes ");
Income_IO.Put(Tax_Bill, 10, 2, 0) ;
Text_IO.New_Line ;

END Estimate Tax;

CMSC130 -3- Lectures

FORMAL PARAMETERS, ACTUAL
PARAMETERS AND LOCAL VARIABLES

Terminology

Formal Parameters: The Names Declared After The Function
Name And Before The "Return" In A Function Declaration

Actual Parameters: The Expressions That Are Supplied In A
Function Call

Local Variables: The Names Declared After The "Is" And
Before The "Begin"

Static Semantic Rules:

1. The Type Of Corresponding Actual Parameters And
Formal Parameters Must Match

2. Formal Parameters And Local Variables Can Only Be
Accessed In The Function In Which They Are Defined

3. In Functions, Formal Parameters Act As Constants, They
Are Read Only, They Cannot Be Assigned To

Parameter Association In Function Calls

Positional Association: Only The Actual Parameter Is
Supplied

Named Association: Both The Actual And The Formal
Parameters Are Supplied

CMSC130 -4- Lectures

PACKAGES CONTAINING FUNCTIONS

Package Concept

A Package Collects Together Functions Into A Library That
Can Be Used By Many Programs

A Package Consists Of A Specification, Which Defines The
Interface, And A Package Body, Which Contains The
Implementation Details

Package Specification Syntax

package_specification ::=
PACKAGE identifier is

{function_specification}
END identifier ;

Function Specification Syntax

function_specification
FUNCTION identifier [formaljDarameters]
RETURN type ;

Package Body Syntax

päckage_body ::=
PACKAGE BODY identifier is

{function_declaration}
END identifier ;

Important Point:

1. This Is A Very Simplified Package Syntax

CMSC130 -5- Lectures

PACKAGE SPECIFICATION EXAMPLE

Tax Package Specification

PACKAGE Tax_Pack:age IS
FUNCTION Federal_Taxes

(Income, Tax_Rate: Float) RETURN Float;
FUNCTION FICAJIaxes

(Income: Float; Self_Employed: Boolean)
RETURN Float;

-- FUNCTION StateJIaxes
(Income: Float; State: String)

-- RETURN Float;
END Tax_Package;

-- Social security taxes only applied to the
-- first 54,000 of income

-- Medicare taxes not subject to an income
-- limit

-- Self_employed individuals pay both the
-- employee and employer share

-- A function specification is included as
-- a comment for state tax function

CMSC130 -6- Lectures

PACKAGE BODY EXAMPLE

Tax Package Body

PACKAGE BODY Tax_Package IS
FUNCTION Fecieral_Taxes

(Income, Tax_Rate; Float)
RETURN Float IS
BEGIN
RETURN Income * Tax_Rate;

END FederalJTaxes;
FUNCTION FICA_Taxes

(Income: Float; Self_Employed: Boolean)
RETURN Float IS

Rate, Tax_Bill: Float;
BEGIN

IF Self_Employed THEN
Rate := 0.145;

ELSE
Rate := 0.0725;

END IF;
IF Income <= 54000.00 THEN

Tax_Bill := Income * Rate;
ELSE

Tax_Bill := Income * Rate;
Tax_Bill := Tax_Bill +
(Income - 54000.00) * 0.0125;

END IF ;
RETURN Tax_Bill;

END FICA_Taxes;
END Tax_Package;

CMSC130 -7- Lectures

FUNCTION SEMANTICS

Denotational Semantics

A Method For Defining The Meaning Of Functions That Uses
Mathematical Functions

Ada Functions As Mathematical Functions

The Domain Of The Mathematical Function Is The Cartesian
Product Of The Types Of The Formal Parameters

The Co-domain Is The Type Returned By The Function

Function Example

FUNCTION Hypotenuse
Side_l: Float;
Side_2: Float)

RETURN Float;

fr R x R -> R

Mathematical Function Definition

The Mathematical Definition Of An Ada Function Should
Depend Only On The Formal Parameters, The Local
Variables Should Not Be A Part Of The Definition

Important Point:

1. A Function Specification Should Include The Ada
Function Specification And A Comment Defining Its
Meaning, Mathematics Or English Can Be Used

CMSC130 -8- Lectures

EQUIVALENT FUNCTIONS

Two Equivalent Functions

WITH Math_Lib;
FUNCTION Hypotenuse (Side_l, Sicle_2 : Float)
RETURN Float IS
Side_l_Squaredf Side_2_Squared: Float;
PACKAGE Math IS NEW Math_Lib(Float)/

BEGIN
Side_l_Squared := Side_l ** 2;
Side_2_Squared := Side_2 ** 2;
RETURN Math.Sqrt (Side_l_Squarec0 +

Side_2_Squared) ;
END Hypotenuse;

WITH Math_Lib;
FUNCTION Hypotenuse (Side_lfSide_2: Float)
RETURN Float IS

SurrMD^Squares, Side_3: Float;
PACKAGE Math IS NEW Math_Lib(Float) ;

BEGIN
Sum_Of_Squares := Side_l ** 2 +
Side_2 **2;

Side_3 := Math. Sqrt (Sum_Of_Squares) ;
RETURN Side_3;

END Hypotenuse;

Mathematical Definition

/?: R X R -> R /7(S1,S2) = Vsi2 + S22

CMSC130 -9- Lectures

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 6

DEFINITE ITERATION

DEFINITE ITERATION CONCEPT

Major Issues:

1. Programs Containing Only Conditional Control Have
Forward Control Flow

2. Certain Problems Require Iterative Control To Be Solved

Terminology:

Definite Iteration: Control Mechanism That Permits The
Repetition Of A Group Of Statements A Fixed (At Run-Time)
Number Of Times

Important Points:

1. If The Number Of Repetitions Is Known At Compile-Time,
Iteration Can Be Avoided By Repeating The Code At
Fixed Number Of Times

2. If The Number Of Repetitions Is Not Known Until Run-
Time, Definite Iteration Is Required

A Simple Problem Requiring Definite Iteration
Computing Triangular Numbers

1. Read In An Integer n, From The Keyboard

2. Compute The Sum Of The First n Integers
n

li
1=1

3. Print The nth Triangular Number, The Sum

CMSC130 -2- Lectures

DEFINITE ITERATION EXAMPLE

Triangular Numbers Program

WITH Text_IO/
PROCEDURE TriangularJSlumbers IS

Number, Triangle: Integer;
PACKAGE Int_IO IS NEW Text_IO.Integer_IO

(Integer);
BEGIN
Text_IO.Put("Enter Number: ");
Int_IO.Get(Number);
Triangle := 0;
FOR Index IN 1..Number LOOP

Triangle := Triangle + Index;
END LOOP;
Text_IO.Put("Triangular Number = ");
Int_IO.Put(Triangle);

END Triangular_Numbers;

Triangular Numbers

CMSC130 -3- Lectures

FOR STATEMENT

For Statement Syntax

for_statement ::=
FOR identifier IN [REVERSE] cf/screfej-ange LOOP

sequence_of_statements
END LOOP;

Static Semantic Rules:

1. The Loop Control Variable Is Implicitly Declared

a) The Loop Control Variable Should Not Be Explicitly
Declared, Doing So Creates Two Variables

b) It Can Only Be Referenced From The Sequence Of
Statements That Comprise The Body Of The Loop

c) It Only Exists During The Execution Of The Loop, It
Is Deallocated Afterward

2. The Type Of The Loop Control Variable, Defined By Its
Range Of Values Must Be Discrete, Integer Or
Enumerated

3. Within The Body Of The Loop, The Loop Control Variable
Can Not Be Modified By Assignments

4. The Bounds Of The Loop Are Evaluated Once And
Cannot Be Altered In The Body Of The Loop

CMSC130 -4- Lectures

FOR STATEMENT FLOWCHART

Ascending For Statement

FOR I IN 1..N LOOP
sequencejDf_statements

END LOOP;

TRUE

sequence_of_
statements

I := I + 1

i

CMSC130 -5- Lecture 6

IF STATEMENT WITH ELSIF CLAUSES

Categorize Courses Program

WITH Text_IO;
PROCEDURE Categorize_Courses IS

TYPE Categories IS (Lower^evel,
Upper^evel, Graduate, Invalid) ;

Category: Categories;
Course_Nuirber: Integer;
PACKAGE Int_IO IS NEW Text_IO.Integer_IO

(Integer);
PACKAGE Categories_IO IS NEW Text_IO.

Enumeration_IO(Categories);
BEGIN

Text_IO.Put("Enter Course: ") ;
Int_IO.Get(Course_Number);
IF Course_Number < 100 THEN
Category := Invalid;

ELSIF Course_Number < 300 THEN
Category := Lower_Level;

ELSIF Course_Number < 500 THEN
Category := Upper_Level;

ELSE
Category := Graduate;

END IF;
Text_IO.Put("Category Is ") ;
Categories_IO.Put(Category) ;
Text_IO.New_Line;

END Categorize_Courses;

CMSC130 -6- Lecture 4

FORMAL SYNTAX

Backus-Naur Form (BNF)

BNF Is A Meta-Language For Describing The Syntax Of
Programming Languages, It Is Both Precise And Concise

BNF Meta-Symbols

::= Is Defined By

[] Optional (Zero Or One)

{} Repetition (Zero Or More)

| Choice (One Or The Other)

If Statement Syntax

if_statement ::=
IF condition THEN

sequence_of_statements
{ ELS IF condition THEN

sequence_of_statements}
[ELSE

sequence_of_statements]
END IF;

Historical Note:

BNF Was First Used To Describe The Syntax Of The
Programming Language Algol-60

CMSC130 -7- Lecture 4

STATIC SEMANTICS

Static Semantics In English

Syntax Static 1
Semantics

Jump the in house of. X x 1

The car eats the apple. V X

The boy hits the ball. V V

Static Semantic Rules

Static Semantic Rules Are Rules That Determine Whether A
Statement Is Meaningful

Syntax Rules With Semantic Information

condition ::=
boo/ean_expression

The Ada Language Reference Manual Italicizes Static
Semantic Information In Its Syntax Rules

Another Static Semantic Rule

Requiring That The Types Of The Two Operands Within A
Condition Be The Same Is A Static Semantic Rule, These
Rules Often Involve Type Information Or Type Checking

CMSC130 8- Lecture 4

DYNAMIC SEMANTICS

Dynamic Semantic Models

Dynamic Semantics Models Are Methods For Defining The
Meaning Of Statements In Programming Languages

Operational Semantics

Operational Semantics Is One Model For Defining The
Meaning Of Statements That Translates The Statement Into
An Less Abstract Language, Unstructured Language

A Flowchart Is The Simplest Means Of Conveying The
Operational Semantic Meaning Of A Statement

Simple If Statement Flowchart

CMSC130 -9 Lecture 4

NESTED IF STATEMENTS

Summer Day Program

WITH Text_IO/
PROCEDURE Summer_Day IS

TYPE Months IS (Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct, Nov, Dec);

Month: Months;
Day: Integer;
PACKAGE Months_IO IS NEW Text_IO.

Enumeration_IO(Months);
PACKAGE Int_IO IS NEW Text_IO.Integer_IO

(Integer);
BEGIN
Text_IO.Put("Enter Month and Day: ");
Months_IO.Get(Month);
Int_IO.Get(Day) ;
IF Month = Jun THEN

IF Day >= 21 THEN
Text_IO.Put_Line("Summer");

END IF;
ELSIF Month IN Jul..Aug THEN

Text_IO.Put_Line("Summer");
ELSIF Month = Sep THEN

IF Day < 21 THEN
Text_IO.Put_Line("Summer");

END IF;
END IF;

END Summer_Day;

CMSC130 -10- Lecture 4

TRACINü MKUüHAMb Wl I M lh ö IM l tiviciiN i o

Tracing Program Execution

Tracing The Execution Of A Program Can Be A Useful
Technique For Understanding The Action Of A Program

Trace Of Absolute Values Program

Number Number < 0

Int_IO.Get(Number); -5

IF Number < 0 THEN True

Number = -Number 5

END IF;
j

Counting Paths

Two If Else Statements In Sequence Creates A Program With
Four Possible Paths

An If Else Statement With One If Else Statement Nested In
The If Part And One If Else Statement Nested In The Else Part
Creates A Program With Four Paths

Summer Day Program Has 6 Paths
Two Paths For June
One Path For July And August
Two Paths For September
One Path For Other Months

CMSC130 -11 Lecture 4

I bb IINU KMU^ahlMMO vvi i n ir o i AA i CIVII^IN I O

Developing Testing Strategies

All Statements Strategy

Choose Test Data That Will Ensure That Each Statement
In The Program Is ExecutGd

All Paths Strategy

Choose Test Data That Will Ensure That Every Path Of
The Program Is Executed

Test Data To Test Each Path Of Summer Day Program

Condition Test Data Output

j Month = Jun
Day < 21 Jun 5 None

Month = Jun
Day < 21 Jun 30 Summer

Month IN JuL.Aug JuMO Summer

Month = Sep
Day < 21 Sep 8 Summer

i Month = Sep
Day >= 21 Sep 25 None

1

Month NOT IN
Jun..Sep FebS None

CMSC130 12 Lecture 4

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 5

FUNCTIONS

DECLARING AND CALLING FUNCTIONS

Function Concept

User Defined Functions Provide A First Capability For
Procedural Abstraction, Defining A Common Function Once
With The Ability To Call It Any Number Of Times

Function Declaration Syntax

function_declaration ::=
FUNCTION identifier [formal_parameters]
RETURN type IS

{declarations}
BEGIN

sequence_of_statements
END identifier;

formal_parameters ::=
(formal parameter { Formalparameter})

formal parameter ::=
identifier{f identifier}:type

Function Call Syntax

function_call ::=
identifier (actual parameter {,actual_parameter})

actual_parameter ::=
[identifier =>] expression

CMSC130 -2- Lectures

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 10

SIMPLE RECORD TYPES

RECORD DECLARATIONS

Syntax Rules:

record_type_definition ::=
RECORD

componentjist
END RECORD

componentjist ::= component_declaration
{component_declaration} | NULL

component_declaration ::= identifierjist: type_mark
[constraint] [: = expression];

Record Type Declaration:

SUBTYPE Hours IS INTEGER RANGE 0..23;

SUBTYPE Minutes IS INTEGER RANGE 0..59;

TYPE Times IS
RECORD

Hour: Hours;
Minute: Minutes;

END RECORD;

Important Points:

1. Records Can Collect Together Data Elements Of
Different Types

2. Variables Of Record Types With Initialized Components
Are Initialized To Those Values

CMSC130 -2- Lecture 10

RECORD AGGREGATES

Terminology:

Record Aggregate: A Literal Constant Which Represents The
Value Of A Complete Record

Record Object Declaration:

Time: Times;

Positional Aggregate:

Time := (6,45); -- Is Equivalent To
Time.Hour := 6;
Time.Minute := 45;

Named Aggregate:

Time := (Minute => 45f Hour => 6);

RECORD OPERATIONS

Component Selection

Assignment: Types Must Match

Relational Operators: = /= Predefined

Arithmetic And Logical Operators: None Predefined

CMSC130 -3- Lecture 10

RECORD EXAMPLE

Students Type Definition

SUBTYPE Ages IS Integer RANGE 0..120;
SUBTYPE SSNs IS Integer RANGE

100_000_000..999_999_999 ;
TYPE Students IS

RECORD
Name: String(1..30);
Age: Ages;
SSN: SSNs;

END RECORD;

Get Procedure

WITH Text_IO;
PROCEDURE Get(Student: OUT Students) IS

Last: Natural;
PACKAGE Int_IO IS NEW Text_IO.Integer_IO

(Integer);
BEGIN

Text_IO.Put_Line("Enter name");
Student.Name := (OTHERS => ' ');
Text_IO.Get_Line(Student.Name, Last);
Text_IO.Put_Line("Enter student's age");
Int_IO.Get(Student.Age);
Text_IO.Put_Line("Enter student's SSN");
Int_IO.Get(Student.SSN);

END Get;

CMSC130 -4- Lecture 10

ARRAYS OF RECORD EXAMPLE

Array Of Record Type Definition:

TYPE Departments IS (CMSC,CMISfIFSM);
SUBTYPE Course_Numbers IS INTEGER RANGE

100..499/
SUBTYPE Enrollments IS INTEGER RANGE 0.
TYPE Courses IS
RECORD

Department: Departments;
Course_Number: Course_Numbers;
Enrollment: Enrollments;

END RECORD;
TYPE Course_Lists IS ARRAY(1..25) OF

Courses;
List: Course Lists;

45;

List (1) .Course Number := 130;

List (1)

List (2)

List (25)

Course_
Department Number Enrollment

CMSC 130 42

CMSC 135 35 |

CMSC 430 21 1

CMSC 130 Lecture 10

NESTED RECORDS

Preliminary Type Definitions:

Hours_Per_Day: CONSTANT := 24;
Minutes_Per_Hour: CONSTANT := 60;
SUBTYPE Hours IS INTEGER RANGE

0..Hours_Per_Day - 1;
SUBTYPE Minutes IS INTEGER RANGE

0..Minutes_Per_Hour - 1/
TYPE Departments IS (CMSC,CMIS,IFSM);
SUBTYPE Course_Numbers IS INTEGER RANGE

100..499;
SUBTYPE Sections IS INTEGER RANGE

1000..9999;
TYPE Days IS (Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday);

Nested Record Type Definition

TYPE Times IS
RECORD

Hour: Hours;
Minute: Minutes;

END RECORDS-
TYPE Intervals IS
RECORD

Start_Time: Times;
Stop_Time: Times;

END RECORD;

CMSC130 -6- Lecture 10

DOUBLY NESTED RECORDS

Doubly Nested Record Type Definition:

TYPE Classes IS
RECORD

Department-: Departments;
Course_Number: Course_Numbers/
Section: Sections;
Day: Days;
Interval: Intervals;

END RECORD;
Class: Classes;

Class.Interval.Start Time.Hour := 7;

Class

Department Section
I

Interval

Course Number Day

Start Time Stop_Time

 i

Hour
I

Minute Hour Minute

CMSC130 -7 Lecture 10

RECORDS CONTAINING ARRAYS

Record Containing Array Type Definition:

SUBTYPE Percents IS INTEGER RANGE 0..100/
TYPE Homeworks IS ARRAY (1..10) OF Percents;
TYPE Projects IS ARRAY (1..4) OF Percents;
TYPE Grades IS
RECORD

Homework: Homeworks;
Project: Projects;
First_Exam/ Second_Exam, Final:

Percents;
END RECORD;

Grade: Grades;

Grade.Homework(2) := 100;

Homework

Projects

First_Exam

Second_Exam

Final Exam

CMSC130 -8- Lecture 10

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 11

PROCEDURAL ABSTRACTION

PHASES OF SOFTWARE DEVELOPMENT

Requirements

Written Document Specifying Systems Requirements

Analysis And Design

Analysis Of Requirements To Determine Hardware And
Software Design

System Design By Decomposition Into Subsystems Including
Interface Specifications

Coding And Unit Testing

Translation Of Design Of Individual Units Into A Specific
Programming Language

Testing Of Individual Units Using Drivers Or Stubs

Integration And Testing

Integration Of Individual Units To Uncover Interface Problems

Testing System Against Original Requirements Specification

Operation And Maintenance

Operation Of System

Maintenance Includes Fixing Problems As Discovered And
Adding Necessary Enhancements

CMSC130 -2- Lecture 11

TOP-DOWN DESIGN EXAMPLE

Problem: Design A Spreadsheet Program

Major Steps

1. Perform Initial Program Setup

2. Get A Command From The User

3. While The Command Is Not QUIT

LOOP

4. Execute The Command

5. Display The Results Of The Command

6. Get A Command From The User

END LOOP

7. Quit

Important Points:

1. The Design Should Include High-Level Algorithms And
Initial Ideas For Data Structures

2. The Outlines Of A Main Procedure And The Required
Subprograms Should Begin To Emerge

3. One Approach Is To Create Compilable Ada Modules
With All Of The High-Level Concepts Written As
Comments

CMSC130 -3- Lecture 11

TOP-DOWN DESIGN REFINEMENTS

1. Initial Program Setup

Allocate The Minimum Amount Of Memory Needed

Clear The Screen, Print The Logo And Display The Main
Menu

2. Get A Command

IF Valid Menu Choice Selected THEN
IF The Menu Choice Has Sub-Choices THEN

Display The Sub-Choices
ELSE

Get Required Data
Add Data To Command Record

END IF
ELSIF The Right Arrow THEN

IF Cursor Is On Rightmost Menu Item THEN
Place Cursor On The Leftmost Menu Item

ELSE
Move Cursor One Menu Item To The Right

END IF
ELSIF The Left Arrow THEN

IF Cursor Is On Leftmost Menu Item THEN
Place Cursor On The Rightmost Menu Item

ELSE
Move Cursor One Menu Item To The Left

END IF
END IF

CMSC130 -4- Lecture 11

UNIT TESTING STRATEGIES

Top-Down Testing

Testing Strategy

A Method Of Unit Testing For High-level Subprograms
Using Incomplete Lower Level Subprograms Called
Stubs

Stubs

Stubs Typically Output A Message Indicating That They
Have Been Called

Bottom-Up Testing

Testing Strategy

A Method Of Unit Testing For Low-Level Subprograms
Using Skeletal Higher Level Subprograms Called Drivers

Drivers

Drivers Typically Call The Subprogram To Be Tested And
Output The Result

Important Points:

1. Ada Subunits Are A Language Feature That Can
Facilitate Unit Testing

2. The Syntax Of Subunits Will Be Studied In The
Subsequent Course

CMSC130 -5- Lecture 11

TOP-DOWN TESTING

Data Processor Procedure With Stubs

WITH Text_IO;
PROCEDURE Data_Processor IS

PROCEDURE Read_Input IS
BEGIN

Text_IO. Put ("Input Read");
Text_IO.New_Line;

END Read_Input;
PROCEDURE Perform_Processing IS
BEGIN

Text_IO.Put("Processing Performed") ;
Text_IO.New_Line;

END Perform_Processing;
PROCEDURE Write_Output IS
BEGIN

Text_IO.Put("Output Written") /
Text_IO.New_Line;

END Write_Output;

BEGIN
Read_Input;
Perform_Processing;
Write_Output;

END Data Processor;

CMSC130 -6- Lecture 11

BOTTOM-UP TESTING

Driver Procedure To Test Min Function

WITH Text_IO;
PROCEDURE Driver IS

Valuel, Value2f Minimum: Integer;
PACKAGE Int_IO IS NEW Text_IO.Integer_IO

(Integer);

FUNCTION Min(Left,Right: Integer)
RETURN Integer IS
BEGIN

IF Left < Right THEN
RETURN Left;

ELSE
RETURN Right;

END IF;
END Min;

BEGIN
Text_IO.Put("Enter Two Integers: ");
Int_IO.Get(Valuel);
Int_IO.Get(Value2);
Minimum := Min(Valuel,Value2);
Text_IO.Put("Minimum Is ");
Int_IO.Put(Minimum);
Text_IO.New_Line;

END Driver;

CMSC130 -7- Lecture 11

BLOCK STATEMENT

Block Statement Syntax

block_statement ::=
[b/oc/c_simple_name:]
[DECLARE

declarative_part]
BEGIN

sequence_of_statements
END [b/oc/c_sinriple_name];

Semantic Rule:

1. Block Names Must Match If They Are Present

Important Points:

1. Blocks Localize Variables And Can Save Memory, But
Small Subprograms Can Do The Same

2. Blocks Are Most Useful For Exceptions

Terminology:

Frame: A Block, A Procedure Or A Function

DECLARE PROCEDURE FUNCTION I
declarations declarations declarations

BEGIN BEGIN BEGIN
statements statements statements

END END END

CMSC130 8 Lecture 11

SCOPE AND VISIBILITY

Terminology:

Scope: Portion Of A Program For Which A Specific Identifier
Is Defined

Visibility: Identifiers That Can Be Accessed From A Specific
Point In A Program

Scope And Visibility Rules

1. The Scope Of Identifiers Is From Their Declaration Until
The End Of The Frame In Which They Are Declared

2. When The Same Identifier Is Redeclared In An Inner
Frame, Only The Inner Occurrence Is Directly Visible
(Most Closely Nested Rule)

3. When The Same Identifier Is Redeclared In An Inner
Frame, The Outer Occurrence Is Visible By Selection
Using The Expanded Name

4. The Scope Of Formal Parameters Is The Same As The
Scope Of Their Subprogram Name, Outside The
Subprogram They Are Visible Only Within Named
Parameter Associations

Accessing Hidden Identifiers

Hidden Identifiers Are Visible By Selection And Can Be
Accessed Using An Expanded Name

CMSC130 -9- Lecture 11

VISIBILITY BY SELECTION

Expanded Name Example

PROCEDURE Outer_Frame IS
Variable: Integer;

BEGIN
Inner_Frame:
DECLARE

Variable: Character;
BEGIN

Inner_Frame.Variable
Outer_Frame.Variable
Variable := 'B';

END Inner_Frame;
END Outer Frame;

= 'A
= 1;

Outer Frame

Variable

Inner Frame

^ 7 -a "^ T -^ Vs 1 r\ VariaD-Le

CMSC130 -10 Lecture 11

FILE INPUT/OUTPUT

Major Issue:

1. To Write Programs With More Than One Input File Or
More Than One Output File, Explicit File Input/Output Is
Required

Explicit File Processing

All Explicit Files Must Be Declared, Explicitly Opened And
Explicitly Closed, All Input/Output Must Explicitly Name Which
File Is Being Referenced

TextJO Package

PACKAGE Text_IO IS
TYPE File_Type IS LIMITED PRIVATE;
TYPE File_Mode IS (In_FilefOut_File);
PROCEDURE Open(File: IN OUT File_Type;

Mode: IN File_Mode; Name IN String;
Form: IN String := "");

PROCEDURE Close(File: IN OUT File_Type);
FUNCTION End_Of_Line(File: IN File_Type)

RETURN Boolean;
FUNCTION End_Of_File(File: IN File_Type)
RETURN Boolean;

• • •

— Many Other Subprograms
• • •

END Text 10;

CMSC130 -11- Lecture 11

EXPLICIT FILE EXAMPLE

Copy File Procedure

WITH Text_IO; USE Text_IO;
PROCEDURE Copy_File IS

Input_File, Output_File: File_Type;
Char: Character;

BEGIN
Open(Input_FilefIn_File,"IN.TXT");
Create (Output_File, Ou^File, "OUT . TXT") ;
WHILE NOT End_Of_File(Input_File) LOOP

WHILE NOT End_Of_Line(Input_File) LOOP
Get (Input_File,Char);
Put (Output_Filef Char);

END LOOP;
Skip_Line(Input_File);
New_Line(Output_File);

END LOOP;
Close(Input_File);
Close(Output_File);

END Copy_File;

Important Points:

1. This Program Copies The Line And File Structure Of The
Input File To The Output File

2. The Output File Is Created Rather Than Opened
Because It Does Not Already Exist

CMSC130 -12- Lecture 11

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 12

DATA ABSTRACTION

ABSTRACT DATA TYPES

Terminology:

Abstract Data Type: An Axiomatic Definition Of A Data Type
Which Defines The Behavior Of The Data Type And Its
Associated Operations

The Natural Numbers - N

Operations

Zero 0 : 0 -> N

Successor o : N -> N

Peano Axioms

1. V n,m € N: a(n) = o(m) =» n = m

2. V n e N: o(n) * 0

3. V M 9 M c N: (0 G M, n G M => a(n) G M) => M = N

Mathematical Induction Axiom

Supplemental Operation

Addition + : N x N -> N

Addition Axioms

1. VnGN:n + 0 = n

2. V n,m G N: n + a(m) = o(n + m)

CMSC130 -2- Lecture 12

DATA TYPE REPRESENTATIONS AND
IMPLEMENTATIONS

Terminology:

Data Type Representation: A Way To Represent The
Elements Of A Data Type

Data Type Implementation: A Way To Implement The
Operations Of A Data Type Which Is Consistent With Its
Abstract Definition

Natural Numbers Representations

Literal Representations

1. Roman Numerals
2. Arabic Numerals In Base 10
3. Arabic Numerals In Base 5

Internal Machine Representations

1. Natural
2 Binary Coded Decimal
3 ASCII

Natural Numbers Implementation

To Uncoyer The Details Of The Implementation Of The
Arithmetic Operations For Natural Numbers, One Must Look
Into The Arithmetic Logic Unit Of The CPU

CMSC130 -3- Lecture 12

EXTERNAL VIEW AND INTERNAL DETAILS

External View

The Abstract Data Type Is The External View, It Describes
The Operations Of The Data Type And Their Behavior

In Practice The Behavior Of A Data Type Might Best Be
Described With English, Not Formal Mathematics

Major Issues:

1. The Exact Details Of How The Dala Is Represented And
The Operat'oNs Are Implemented Is Unimportant To The
User, The^e Details Should Be Hidden

2. It Is Important That The Implementation Be Consistent
With The Axioms, 2 + 2 Must Equal 4

Internal Details

Internal Details Can Be Determined By The Hardware,
System Software Or Application Software

Important Points:

1. The Internal Machine Representation And
Implementation For Fundamental Data Types Is Made By
The Hardware Designers

2. The Representation And Implementation For User-
Defined Data Types Must Be Made By The Software
Designer

CMSC130 -4- Lecture 12

ADA AND ABSTRACT DATA TYPES

Major issue:

Ada Packages Provide The Necessary Facility For
Implementing Abstract Data Types

Visible Part Of Package Specification

The Abstract Data Type Is Defined Here

1. A Private Type Definition Names The Type

2. Subprogram Definitions Define The Operations, Ada
Allows Functions Names To Be Operator Symbols

3. Comments Can Define The Axioms, The Behavior
Of The Data Type

Private Part Of Package Specification

The Representation Of The Data Type Is Defined Here As A
Type Definition

Package Body

The Implementation Of The Data Type Is Defined Here As
The Bodies Of The Subprograms Declared In The
Specification

Important Point:

1. Only The Visible Part Of The Package Can Be Seen By
Users Of The Package

CMSC130 -5- Lecture 12

PACKAGES

Package Syntax

package_specification ::=
PACKAGE identifier is

{basic_declarativejtem}
[PRIVATE

{basic__deciarativejtem}]
END [pac/cagfe_simple_name];

package_body ::=
PACKAGE BODY pac/cagfe_sinnple_name is

[declarative_part]
END [pac/cagfe_simple_name];

General Package Structure

PACKAGE Data_Type_Package IS
TYPE Data_Type IS PRIVATE;
-- Subprogram Specifications

PRIVATE
TYPE Data_Type IS
--Actual Type Definition

END Data_Type_Package;

PACKAGE Data_Type_Package IS
--Subprogram Bodies

END Data Type Package;

CMSC130 -6- Lecture 12

COMPLEX PACKAGE SPECIFICATION

Package Specification

PACKAGE Complex_Package IS
TYPE Complex IS PRIVATE;
FUNCTION "+"(X,Y
FUNCTION "-"(X,Y
FUNCTION "*" (X,Y
FUNCTION 'V" (X,Y
FUNCTION "+"(X: Float;
Complex;

FUNCTION "*"(X: Float;
Complex;

FUNCTION Re(X:Complex)
FUNCTION Im(X:Complex)
i: CONSTANT Complex;

PRIVATE
TYPE Complex IS
RECORD

Real: Floats-
Imaginary: Float;

END RECORD;
i: CONSTANT Complex :=

COMPLEX)
COMPLEX)
COMPLEX)
COMPLEX)

RETURN Complex
RETURN Complex
RETURN Complex
RETURN Complex

Y: Complex) RETURN

Y: Complex) RETURN

RETURN Float;
RETURN Float;

= (0.0,1.0);
END Complex_Package;

Important Points:

1. The Second + And * Functions Are Constructors

2. The Functions Re And Im Are Selectors

CMSC130 -7- Lecture 12

COMPLEX PACKAGE BODY

Package Body

PACKAGE BODY Complex_Package IS
FUNCTION "+"(X,Y: COMFLEX)
RETURN Complex IS
BEGIN

RETURN (X.Real + Y.Real,
X.Imaginary + Y.Imaginary)/

END "+";
FUNCTION "^"(X.Y: COMPLEX)
RETURN Complex IS
BEGIN

RETURN (X.Real * Y.Real - X.Imaginary *
Y.Imaginary, X.Real * Y.Imaginary +
X.Imaginary * Y.Real);

END "*";
FUNCTION "+"(X: Float; Y: Complex)
RETURN Complex IS
BEGIN

RETURN (X + Y.Real, Y.Imaginary);
END "+";
FUNCTION "*"(X: Float; Y: Complex)
RETURN Complex IS
BEGIN

RETURN (X * Y.Real, X * Y.Imaginary) ;
END "*";

END Complex Package;

CMSC130 -8- Lecture 12

USE OF COMPLEX NUMBER PACKAGE

Complex Numbers Procedure:

WITH Complex_Package; USE Complex_Package;
PROCEDURE Complex_Numbers IS

Complexl,Complex2,Complex3: Complex;
BEGIN

Complexl := 3.0 + 2.0 * i;
Complex2 :=

(Real => 1.0, Imaginary => 2.0);
ComplexS := Complexl + Complex2;

END Complex_Numbers;

Important Points:

1. In Order To Use The Complex Operators In Their Infix
Form, It Is Necessary To "Use" The Package

2. Complex Numbers Are Created With The Selectors

Using +,* (FLOAT, COMPLEXES -> COMPLEXES)

For Example, 3.0 + 2.0*1

3. The Second Assignment Is A Syntax Error Because The
The Type Is Private

4. The Third Assignment Performs Complex Number
Addition

CMSC130 -9- Lecture 12

SOFTWARE ENGINEERING CONCEPTS

Terminology:

Encapsulation: Physically Enclosing The Type Definition And
Operations For An Abstract Data Type

Information Hiding: Limiting Visibility Of Type And Variable
Declarations

Loosely Coupled Systems: Systems Subdivided Into
Components With Minimal Interdependence

Software Reusability: General Software That Can Be Used By
Many Programs

Important Points:

1. If The Complex Number Package Were Changed From
Rectangular Coordinates To Polar Coordinates
Programs That Use The Package

a) Would Require Recompilation
b) Would Not Require Any Changes

2. Loose Coupling Minimizes The Possibility That Software
Changes Will Create Problems In Other Parts Of The
System

3. Ada Packages Enable Encapsulation, Information Hiding
And Make It Possible To Create Loosely Coupled
Systems

CMSC130 -10- Lecture 12

CHARACTER PACKAGE SPECIFICATION

Package Specification

PACKAGE Character_Function_Package IS
FUNCTION Is__Upper (Ch: Character)

RETURN Boolean;
FUNCTION Is_Lower(Ch: Character)

RETURN Boolean;
FUNCTION Is_Alpha(Ch: Character)

RETURN Boolean;
FUNCTION Is_Digit(Ch: Character)

RETURN Boolean;
FUNCTION To_Upper(Ch: Character)

RETURN Character;
FUNCTION To_Lower(Ch: Character)

RETURN Character;
END Character_Function_Package;

Important Points:

1. This Package Does Not Define A New Type, It Collects
Together A Library Of Similar Utility Functions

2. Packages Can Also Be Used To:

a. Define A Collection Of Constants, Such Packages
May Have No Bodies

b. Define A Collection Of Variables, Although Ada
Permits This, It Is A Very Poor Practice

CMSC130 -11- Lecture 12

CHARACTER PACKAGE BODY

Package Body

PACKAGE BODY Character_Function_Package IS
FUNCTION Is_Upper(Ch: Character)

RETURN Boolean IS
BEGIN

RETURN Ch IN 'A'..'Zf;
END Is_Upper/
FUNCTION Is_Alpha(Ch: Character)

RETURN Boolean IS
BEGIN

RETURN Is_Lower (Ch) OR Is_Upper (Ch);
END Is_Alpha/
FUNCTION To_Upper (Ch: Character)

RETURN Character IS
Offset: Integer := Character'Pos('A') -

Character'Pos('a')/
Place: Integer;

BEGIN
IF Is_Lower(Ch) THEN
Place := Character'Pos(Ch) + Offset;
RETURN Character1Val(Place);

ELSE
RETURN Ch;

END IF;
END To_Upper;
-- Several Function Bodies Are Omitted

END Character_Function_Package;

CMSC130 -12- Lecture 12

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 13

ADVANCED ARRAY TYPES

MULTIDIMENSIONAL ARRAYS

Multi-Dimensional Array Definition Syntax

multi-dimensionaLarrayjjefinition ::=
ARRAY (dlscretej'ange{/discrete_range}) OF type

Multi-Dimensional Array Type Declarations

TYPE Square_Matrix IS ARRAY(1..10,1..10) OF
Integer;

TYPE Rectangular_Matrix IS ARRAY(1. .2f1. . 4)
OF Integer;

TYPE Three_Dimensional_Array IS ARRAY
(1. .5,1. .5,1. .5) OF Floats-

Array Object Declarations

Square: Square_Matrix;

Rectangle: Rectangular_Matrix;

Three: Three_Dimensional_Array;

Array Component Assignments

Matrix (1,1) := 1;

Rectangle (2,4) := 5;

Three(l,2,5) := 3.8;

CMSC130 -2- Lecture 13

MULTI-DIMENSIONAL AGGREGATES

Positional Aggregate

Rectangle := ((1,2,3,4), (2,4,6,8));

Named Aggregate

Rectangle := (
1 => (1 => 1, 2 => 2, 3 => 3, 4 => 4)f

2 => (1 => 2, 2 => 4, 3 => 6, 4 => 8));

MULTI-DIMENSIONAL ARRAY OPERATIONS

Assignment

Types Must Match

Subscripting

A Subscript Must Be Provided For Each Dimension

Slicing

Slices Are Not Permitted On Multi-Dimensional Arrays

Relational Operators

Pre-defined = /=

Not Pre-defined >>=<<=
May Be User Defined

CMSC130 -3- Lecture 13

STORAGE ALLOCATION FOR ARRAYS

Row Major

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4

Column Major

/ / 1 \

Jj
/ /i m
/ V L r r r 1 v

1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4

CMSC130 -4- Lecture 13

TWO-DIMENSIONAL ARRAY EXAMPLE

Type Declaration

SUBTYPE Row_Range IS Integer RANGE 1..2/
SUBTYPE Column_Range IS Integer RANGE 1.
TYPE Original_Type IS ARRAY(Row_Rangef

Column_Range) OF Integer;
TYPE Flipped_Type IS ARRAY(Column_Range,

Row_Range) OF Integer;

Matrix Transposition Function

FUNCTION Transpose(Original: Original_Type)
RETURN Flipped_Type IS
Flipped: Flipped__Type;

BEGIN
FOR Row IN Row_Range LOOP
FOR Column IN Column_Range LOOP

Flipped(Column^Row) :=
Original(Rowf Column);

END LOOP;
END LOOP;
RETURN Flipped;

END Transpose;

Important Point:

1. A Generalized Function For Matrices Of Any Size Can Be
Written Using Unconstrained Array Types

CMSC130 -5- Lecture 13

THREE DIMENSIONAL ARRAY EXAMPLE

Type Declarations

TYPE Day_Type IS (Monday, Tuesday,
Wednesday, Thursday, Friday);

SUBTYPE Room_Type IS Integer RANGE 1..10;
TYPE Bldg_Type IS (Computer_Science,

Engineering)/
TYPE Room_Status_Type IS (Available,

Reserved);
TYPE Room_Availability_Matr.-ix IS

ARRAY (Day_Type, Bldg_Type, Room_Type) OF
Room_Status_Type;

Initialized Variable Declarations

Room_Matrix: Room_Availability_Matrix :=
(Monday..Friday =>
(Computer_Science..Engineering =>
(Room__Type ' First. . Room_Type' Last =>
Available)));

Constant Declaration

Full: CONSTANT Room_Availability_Matrix :=
(Monday..Friday =>
(Computer_Science..Engineering =>
(Room__Type ' First. . Room_Type' Last =>
Reserved)));

CMSC130 -6- Lecture 13

UNCONSTRAINED ARRAY TYPES

Unconstrained Array Definition Syntax

unconstrained_array_definition ::=
ARRAY (type RANGE <>{, type RANGE <>}) OF type

Unconstrained Array Type Declarations

TYPE Integer_Vector IS ARRAY
(Integer RANGE <>) OF Integer;

TYPE Character_Frequency IS ARRAY
(Character RANGE <>) OF Integers-

Array Object Declarations

Vector: Integer_Vector(1..10);

Frequency : Character_Frequency('a'..'z');

Important Points:

1. The Box Symbol <> Means "To Be Specified"

2. Constrained Indexes And Unconstrained Indexes Can
Not Be Mixed In The Same Array Type Declaration

3. An Object Of An Unconstrained Type Must Be
Constrained In The Object Declaration

4. A Formal Parameter Of An Unconstrained Array Type
May Be Left Unconstrained

CMSC130 -7- Lecture 13

ARRAY ATTRIBUTES

Array Attributes

Type1First(I)
First Subscript Of Ith Dimension

Type'Last (I)
Last Subscript Of Ith Dimension

Type'Length(I)
Number Of Elements In Ith Dimension

Type'Range (I) <=? Type ' First (I) .. Type ' Last (I)

Important Points:

1. Array Attributes May Be Applied To Either Array Types
Or Array Objects

2. Subscript Can Be Omitted For First Dimension

Examples

Vector'First -- 1
Vector'Range -- 1..10

t r, I Frequency'Last — 'z
Frequency'Length -- 26

Rectangle'Last(1) -- 2
Rectangle'Last(2) — 4

CMSC130 -8- Lecture 13

ASSIGNMENT AND COMPARISON

Assignment Rule

To Assign Arrays They Must Be Of Same I ype And Same
Length, But The Bounds May Be Different

Assigning Arrays Of Different Lengths Produces A Constraint
Error At Run Time

Array Assignment Example

TYPE Array_Type IS ARRAY (Integer RANGE <>)
OF Integer;

Array_l: Array_Type(0 . . 9)/
Array_2: Array_Type(1..10);

Array_l := Array_2; -- Valid Assignment

Comparison Rule

To Compare Arrays They Must Be Of Same Type And Same
Length, But The Bounds May Be Different

Comparing Arrays Of Different Lengths Produces A Value Of
False

Array Comparison Example

"String" = "String "

-- False Because Lengths Are Differenc

CMSC130 -9- Lecture 13

UNCONSTRAINED ARRAYS AND
SUBPROGRAMS

Major Issues:

1. Unconstrained Array Types Decouple The Length From
The Type

2. Unconstrained Array Types Make It Possible To Write
Generalized Subprograms

Specific Issues:

1. Subprograms Can Have Array Parameters Of An
Unconstrained Array Type, Left Unconstrained

2. Functions Can Return Arrays Of An Unconstrained Type

Storage Allocation Issues:

1. Because The Compiler Must Allocation Space For Array
Variables, They Must Be Constrained In Their
Declaration If Their Type Is Unconstrained

2. The Size Of An Unconstrained Formal Parameter Is
Determined At Run-Time, It Depends On The Size Of
The Actual Parameter

Important Point:

1. The Attributes Of An Array Parameter Are Passed With
The Array Automatically, So It Is Not Necessary To Pass
Them As Parameters

CMSC130 -10- Lecture 13

UNCONSTRAINED PARAMETER EXAMPLE

Compute Maximum Program

WITH Text_IO;
PROCEDURE Compute_Maximum IS

TYPE Vectors IS ARRAY(Integer RANGE <>)
OF Integer;

Five_Values: Vectors(1..5)/
Maximum: Integer;
PACKAGE Int_IO IS NEW

Text_IO.Integer_IO(Integer);
FUNCTION Find_Maximum(Vector:

Vectors) RETURN Integer IS
Local_Maximum: Integer := Integer'First;

BEGIN
FOR Index IN Vector'Range LOOP

IF Vector(Index) > Local_Maximum THEN
Local_Maximum := Vector(Index);

END IF;
END LOOP;
RETURN Local_Maximum;

END Find_Maximum;
BEGIN

Five_Values := (20,0,89,18,43);
Maximum := Find_Maximum(Five_Values);
Text_IO.Put("Maximum Is ");
Int_IO.Put(Maximum);
Text_IO.New_Line;

END Compute_Maximum;

CMSC130 -11- Lecture 13

UNCONSTRAINED FUNCTION EXAMPLE

Reverse String Function

FUNCTION Reverse_String(Original: String)
RETURN String IS

Reversed: String(Original'Range);
Reverse_Index: Positive;

BEGIN
FOR Original_Index IN Original'Range LOOP

Reverse_Index := Original'Last -
Original_Index + Original'First;

Reversed(Reverse_Index) :=
Original(Original_Index)/

END LOOP;
RETURN Reversed;

END Reverse_String;

Important Points:

1. String Is A Predefined Unconstrained Array Type

TYPE String IS ARRAY(Positive RANGE <>)
OF Character;

2. The Range Attribute Is Used To Declare A Local Variable
Of The Same Size As The Formal Parameter

3. The Length Of The Returned String Is Determined By Of
The Variable In The Return Statement

CMSC130 -12- Lecture 13

CMSC130

INTRODUCTORY
COMPUTER SCIENCE

LECTURE 14

RECURSION

TRIANGULAR NUMBERS WITH ITERATION

Iterative Definition Of Triangular Numbers

n
An=I i

Iterative Evaluation Of Triangular Numbers

A4= 11 = 1+2 + 3 + 4 = 10
i=1

Iterative Triangular Function

FUNCTION Triangular(Number: Positive)
RETURN Positive IS

Sum: Integer := 0;
BEGIN

FOR Index IN 1..Number LOOP
Sum := Sum + Index;

END LOOP;
RETURN Sum;

END Triangular;

Important Points:

1. The Triangular Number Sequence Is The Following:

1,3,6,10,15,21,28,36...

2. The Summation Symbol Of Mathematics Corresponds
To The For Loop Of Ada

CMSC130 -2- Lecture 14

TRIANGULAR NUMBERS WITH RECURSION

Recursive Definition Of Triangular Numbers

{1 if n = 1

n + An-i if n > 1

Recursive Evaluation Of Triangular Numbers

A4 = 4 + A3
= 4 + 3 + A2
= 4 + 3 + 2 +Ai
= 4 + 3 + 2 + 1 =10

Recursive Triangular Function

FUNCTION Triangular(Number: Positive)
RETURN Positive IS
BEGIN

IF Number = 1 THEN
RETURN 1;

ELSE
RETURN Number + Triangular(Number-1);

END IF;
END Triangular;

Important Point:

1. The Recursive Ada Function Is Simply A Translation Of
The Recursive Definition

CMSC130 -3- Lecture 14

FACTORIAL WITH ITERATION

Iterative Definition Of Factorial

n! = n i
1=1

Iterative Evaluation Of Factorial

4
4! = ni = 1x2x3x4 = 24

1=1

Iterative Triangular Function

FUNCTION Factorial(Number: Natural)
RETURN Positive IS

Product: Integer := 1/
BEGIN

FOR Index IN 1..Number LOOP
Product := Product * Index;

END LOOP;
RETURN Product;

END Factorial;

Important Points:

1. Factorial Is The Multiplicative Analog Of The Triangular
Numbers

2. The Product Symbol Of Mathematics Corresponds To
The For Loop Of Ada

CMSC130 -4- Lecture 14

FACTORIAL WITH RECURSION

Recursive Definition Of Factorial

{1 if n = 0

nx(n-1)!ifn>1

Recursive Evaluation Of Triangular Numbers

4! =4x3!
= 4x3x2!
= 4x3x2x1!
= 4x3x2x1= 24

Recursive Factorial Function

FUNCTION Factorial(Number: Natural)
RETURN Positive 13
BEGIN

IF Number = 0 THEN
RETURN 1;

ELSE
RETURN Number * Factorial(Number-1);

END IF;
END Factorial;

Important Point:

1. Recursive Subprograms Must Contain A Base Case Path
And A Recursive Case Path, The Recursive Case Must
Converge Toward The Base Case

CMSC130 -5- Lecture 14

PALINDROMES WITH ITERATION

Iterative Definitions Of Palindrome

n
2

Palindrome(s) = A Si = Sn-i+i, where n = Length(s)
i - 1

Palindrome(s) = i, 1 < i < ^ => si = Snn+i

(V Is Equivalent To An Iterative A)

Iterative Evaluation Of Palindrome

Palindrome(atoaba) = (a = a) A (d = b) A (6 = c) =
True A True A False = False

Iterative Palindrome Function

FUNCTION Palindrome(Word: String)
RETURN Boolean IS

Right: Integer;
BEGIN

FOR Index IN Word'First..Word'Last/2 LOOP
Right := Word'Last - Index + 1;
IF Word(Index) /= Word(Right) THEN
RETURN False;

END IF;
END LOOP;
RETURN True;

END Palindrome;

CMSC130 -6- Lecture 14

PALINDROMES WITH RECURSION

Recursive Definition Of Palindrome

True if Length(s) < 1

{ Palindrome(s) =
First(s) = Last(s) A Palindrome(Middle(s))

Recursive Evaluation Of Palindrome

Palindrome(aöbaba) = (a = a) A Palindrome(bdab)
= True A Palindrome(böcö)
= True A(b = b) A Palindrome(öc)
= True A True A Palindrome(bc)
= True A True A (ö = c)
= True A True A False = False

Recursive Palindrome Function

FUNCTION Palindrome(Word: String)
RETURN Boolean IS
BEGIN

IF Word'Length <= 1 THEN
RETURN True;

ELSE
RETURN

WordlWord'First) = Word(Word1Last)
AND THEN

Palindrome(Word(Word'First+1 ..
Word'Last-l));

END IF;
END Palindrome;

CMSC130 -7- Lecture 14

COMPARING ITERATION AND RECURSION

Iteration Recursion

1 Control Loop Statement Recursive Call

1 Local Variables Required Not Required

1 Assignments Required Not Required

1 Style Imperative Declarative

Size Larger Smaller

Nontermination Infinite Loop Infinite Recursion

Important Points:

1. Recursion Provides The Beginning Of A Functional Style
Of Programming That Is Characterized By:

a) No Local Variables
b) No Intermediate States
c) No Assignment Statements

2. Functional Programming Is At A Higher Level Of
Abstraction Than Imperative Programming

3. Thinking Recursively Means Searching For A Definition,
Not For An Algorithm

4. Recursion Can Often Provide Shorter Simpler Solutions

CMSC130 -8- Lecture 14

TAIL RECURSION

Terminology:

Tail Recursive: A Subprogram In Which The Recursive Call Is
The Last Step

Tail Recursive Triangular Function

FUNCTION Triangular(Number: Positive)
RETURN Positive IS
FUNCTION Triangle(Number,Sum: Integer)
RETURN Positive IS
BEGIN

IF Number = 0 THEN
RETURN Sum;

ELSE
RETURN Triangle(Number-lf Sum+Number);

END IF;
END Triangle;

BEGIN
RETURN Triangle(Number,0);

END Triangular;

Important Points:

1. Tail Recursive Solutions Mimic Iteration, They Are Not
The Result Of Thinking Recursively

2. The Tail Recursive Solution For This Problem Requires A
Nested Function

CMSC130 -9- Lecture 14

DOUBLE RECURSION

Fibonacci Function

FUNCTION Fibonacci(Number: Natural)
RETURN Natural IS
BEGIN

IF Number = 0 OR Number = 1 THEN
RETURN Number;

ELSE
RETURN Fibonacci(Number-1) +
Fibonacci (Number-2)/

END IF;
END Fibonacci;

CMSC130 10- Lecture 14

CHARACTER REVERSAL

Reversal Procedure

WITH Text_IO;
PROCEDURE Reversal IS

Char: Character;
BEGIN

IF NOT Text_IO.Encl_Of_Line THEN
Text_IO.Get (Char) /
Reversal;
Text_IO.Put(Char) ;

END IF;
END Reversal;

Important Points:

1. This Procedure Uses The Compiler's Stack Of Activation
Records To Perform The Reversal

2. The Order Of Execution Is That All The Gets Are
Executed Before All The Puts

Chari

Char2

Char

Char4

Local Variable Stack

CMSC130 11 - Lecture 14

RECURSION AND EFFICIENCY

Fibonacci Numbers

Execution Speed Memory Utilization

Recursive Exponential Linear

Iterative 1 Linear Constant

Character Reversal

Recursive

Execution Speed

Linear

Memory Utilization

Linear

Iterative Linear Linear

Important Points:

1. The Use Of Recursion Can Dramatically Reduce The
Efficiency Of Certain Problems

2. Other Problems Such As Character Reversal, Can Not
Be Solved In A Bounded Memory Space, For Such
Problems Recursion Does Not Introduce An Efficiency
Penalty

CMSC130 -12- Lecture 14

REFERENCES AND NOTES

REFERENCES: 4|

The following references were used in the preparation of these lecture notes:

Reference Manual For The Ada Prosramming Language, ANSI/MIL-STD
1815A-1983. Washington, D.C.: U.S. Government, 1983.

Barnes, J. G. P. Programming In Ada, Tnird Edition. Reading, Mass.:
Addison-Wesley, 1989.

Cohen, Norman H. Ada As A Second Language. New York: McGraw Hill,
1986.

Feldman, Michael B. and Elliot B. Koffman. Ada Problem Solving and
Program Design. Reading, Mass.: Addison-Wesley, 1992.

Savitch, Walter J. and Charles G. Petersen. Ada, An Introduction to the Art
and Science of Programming. Redwood City, Calif.: Benjamin/Cummings
Publishing Company, 1992.

Sebesta, Robert W. Concepts of Programming Languages. Redwood City,
Calif.: Benjamin/Cummings, 1989.

Shumate, Ken. Understanding Ada (2nd Edition). New York: John Wiley,
1989.

Skansholm, Jan. Ada from the Beginning. Reading, Mass.: Addison-Wesley,
1988.

Volper, Dennis and Martin D. Katz. Introduction to Programming Using
Ada. Englewood Cliffs, N.J.: Prentice-Hall, 1990.

NOTES:

1. The Ada language reference manual and references by Cohen and Barnes
provide a comprehensive view of the Ada language.

2. The reference by Sebesta provides a good discussion of programming
language semantics.

3. The remaining references are all texts for introductoiv programming
courses using Ada.

CMSC 130 - 1 - References

